Skip to main content

Computational Aspects of Anharmonic Lattice Dynamics

  • Conference paper
  • 257 Accesses

Part of the book series: The IBM Research Symposia Series ((IRSS))

Abstract

One major subfield of lattice dynamics is concerned with the evaluation of the physical properties of a defectless or ideal crystal for which the adiabatic approximation should be valid. In this approximation one assumes that the solid is well modeled by a collection of atoms which interact through an interatomic potential and that electronic effects, except as they contribute to the potential, are negligible. This approximation is appropriate for insulating crystals and should be especially good for the solid isotopes of helium, commonly called the quantum crystals, and the rare gas solids. In practice, it is also found to work even for the lattice dynamics of metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HA treats effects caused by changes of the lattice constant as perturbations whereas QHA uses a different set of bare quantities at each lattice constant. Since the latter approach only requires the change of one data element in a computer program, we see little need to consider the former approach at all. Thus, in Section III what could be called SCQHA is called SCHA.

    Google Scholar 

  2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices. (Oxford University Press, London, 1954 ).

    Google Scholar 

  3. A. A. Maradudin, E. W. Montroll and G. H. Weiss, Solid State Physics (ed. by F. Seitz and D. Turnbull) (Academic Press, New York, 1963 ), Suppl. 3.

    Google Scholar 

  4. A. A. Maradudin, P. A. Flinn and R. A. Coldwell-Horsfull, Ann. Phys. (N.Y.) 15, 337 (1961).

    Article  ADS  MATH  Google Scholar 

  5. R. A. Cowley, Advan. Phys. 12, 421 (1963).

    Article  ADS  Google Scholar 

  6. N. R. Werthamer, Phys. Rev. A2, 2050 (1970).

    Article  ADS  Google Scholar 

  7. R. A. Cowley, Rept. Progr. Phys. 31, 123 (1968).

    Article  ADS  Google Scholar 

  8. M. L. Klein, G. K. Horton and J. L. Feldman, Phys. Rev. 184, 968 (1969).

    Article  ADS  Google Scholar 

  9. W.J.L. Buyers and R. A. Cowley, Phys. Rev. 180, 755 (1969).

    Article  ADS  Google Scholar 

  10. T. Högberg and R. Sandström, Phys. Stat. Solidi 33, 169 (1969); T. R. Koehler, N. S. Gillis and D. C. Wallace, Phys. Rev. B1, 4521 (1970); and T. R. Koehler and N. S. Gillis, Phys. Rev. B3, 3568 (1971).

    Google Scholar 

  11. M. Born, Fest. d. Akad. Wiss. Gottingen (1951). A translation of this article has been issued as Bell Laboratories TR.70-14.

    Google Scholar 

  12. D. J. Hooton, Phil. Mag. 46, 422 and 433 (1955).

    Google Scholar 

  13. The appropriate references can be found in Ref. 14 and 15. Of these two, Ref. 14 has the simplest exposition of the theory.

    Google Scholar 

  14. N. R. Werthamer, Am. J. Phys. 37, 763 (1969).

    Article  ADS  Google Scholar 

  15. N. R. Werthamer, Phys. Rev. B1, 572 (1970).

    Article  ADS  Google Scholar 

  16. N. S. Gillis, N. R. Werthamer and T. R. Koehler, Phys. Rev. 165, 951 (1968).

    Article  ADS  Google Scholar 

  17. T. R. Koehler, Phys. Rev. 165, 942 (1968).

    Article  ADS  Google Scholar 

  18. T. R. Koehler, Phys. Rev. 144, 789 (1966).

    Article  ADS  Google Scholar 

  19. T. R. Koehler, Phys. Rev. Letters 17, 589 (1966).

    Article  ADS  Google Scholar 

  20. M. L. Klein, V. V. Goldman and G. K. Horton, J. Phys. Chem. Solids 31, 2441 (1970). References to other calculations by these authors may be found in this reference.

    Google Scholar 

  21. T. R. Koehler, unpublished.

    Google Scholar 

  22. F. W. de Wette and B.R.A. Nijboer, Phys. Letters 18, 19 (1965).

    Google Scholar 

  23. T. R. Koehler and N. R. Werthamer, Phys. Rev. A2074 (1971); and P. Gillissen and W. Biem, Z. Phys. 242, 250 (1971).

    Article  Google Scholar 

  24. T. R. Koehler and N. R. Werthamer, to be published.

    Google Scholar 

  25. H. R. Glyde and F. C. Khanna, to be published.

    Google Scholar 

  26. B. H. Brandow, Phys. Rev. A4, 422 (1971).

    ADS  Google Scholar 

  27. R. A. Guyer in Solid State Physics, Vol. 23 (ed. by F. Seitz D. Turnball and H. Ehrenreich) (Academic Press, New York, 1969 ).

    Google Scholar 

  28. N. S. Gillis and T. R. Koehler, Phys. Rev. to be published.

    Google Scholar 

  29. T. R. Koehler and R. L. Gray, Bull. Am. Phys. Soc. 16, 439 (1971).

    Google Scholar 

  30. R. C. Shukla and E. R. Cowley, Phys. Rev. B3, 4055 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Koehler, T.R. (1972). Computational Aspects of Anharmonic Lattice Dynamics. In: Herman, F., Dalton, N.W., Koehler, T.R. (eds) Computational Solid State Physics. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1977-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1977-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1979-5

  • Online ISBN: 978-1-4684-1977-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics