Computational Solid State Physics pp 339-350 | Cite as

# Computational Aspects of Anharmonic Lattice Dynamics

## Abstract

One major subfield of lattice dynamics is concerned with the evaluation of the physical properties of a defectless or ideal crystal for which the adiabatic approximation should be valid. In this approximation one assumes that the solid is well modeled by a collection of atoms which interact through an interatomic potential and that electronic effects, except as they contribute to the potential, are negligible. This approximation is appropriate for insulating crystals and should be especially good for the solid isotopes of helium, commonly called the quantum crystals, and the rare gas solids. In practice, it is also found to work even for the lattice dynamics of metals.

## Keywords

Brillouin Zone Lattice Dynamic Computational Aspect Adiabatic Approximation Solid Helium## Preview

Unable to display preview. Download preview PDF.

## References

- 1.HA treats effects caused by changes of the lattice constant as perturbations whereas QHA uses a different set of bare quantities at each lattice constant. Since the latter approach only requires the change of one data element in a computer program, we see little need to consider the former approach at all. Thus, in Section III what could be called SCQHA is called SCHA.Google Scholar
- 2.M. Born and K. Huang, Dynamical Theory of Crystal Lattices. (Oxford University Press, London, 1954 ).Google Scholar
- 3.A. A. Maradudin, E. W. Montroll and G. H. Weiss, Solid State Physics (ed. by F. Seitz and D. Turnbull) (Academic Press, New York, 1963 ), Suppl. 3.Google Scholar
- 4.A. A. Maradudin, P. A. Flinn and R. A. Coldwell-Horsfull, Ann. Phys. (N.Y.)
**15**, 337 (1961).ADSMATHCrossRefGoogle Scholar - 5.R. A. Cowley, Advan. Phys.
**12**, 421 (1963).ADSCrossRefGoogle Scholar - 6.N. R. Werthamer, Phys. Rev.
**A2**, 2050 (1970).ADSCrossRefGoogle Scholar - 7.R. A. Cowley, Rept. Progr. Phys.
**31**, 123 (1968).ADSCrossRefGoogle Scholar - 8.M. L. Klein, G. K. Horton and J. L. Feldman, Phys. Rev.
**184**, 968 (1969).ADSCrossRefGoogle Scholar - 9.W.J.L. Buyers and R. A. Cowley, Phys. Rev.
**180**, 755 (1969).ADSCrossRefGoogle Scholar - 10.T. Högberg and R. Sandström, Phys. Stat. Solidi 33, 169 (1969); T. R. Koehler, N. S. Gillis and D. C. Wallace, Phys. Rev.
**B1**, 4521 (1970); and T. R. Koehler and N. S. Gillis, Phys. Rev.**B3**, 3568 (1971).Google Scholar - 11.M. Born, Fest. d. Akad. Wiss. Gottingen (1951). A translation of this article has been issued as Bell Laboratories TR.70-14.Google Scholar
- 12.D. J. Hooton, Phil. Mag.
**46**, 422 and 433 (1955).Google Scholar - 13.The appropriate references can be found in Ref. 14 and 15. Of these two, Ref. 14 has the simplest exposition of the theory.Google Scholar
- 14.N. R. Werthamer, Am. J. Phys.
**37**, 763 (1969).ADSCrossRefGoogle Scholar - 15.N. R. Werthamer, Phys. Rev.
**B1**, 572 (1970).ADSCrossRefGoogle Scholar - 16.N. S. Gillis, N. R. Werthamer and T. R. Koehler, Phys. Rev.
**165**, 951 (1968).ADSCrossRefGoogle Scholar - 17.T. R. Koehler, Phys. Rev.
**165**, 942 (1968).ADSCrossRefGoogle Scholar - 18.T. R. Koehler, Phys. Rev.
**144**, 789 (1966).ADSCrossRefGoogle Scholar - 19.T. R. Koehler, Phys. Rev. Letters
**17**, 589 (1966).ADSCrossRefGoogle Scholar - 20.M. L. Klein, V. V. Goldman and G. K. Horton, J. Phys. Chem. Solids
**31**, 2441 (1970). References to other calculations by these authors may be found in this reference.Google Scholar - 21.T. R. Koehler, unpublished.Google Scholar
- 22.F. W. de Wette and B.R.A. Nijboer, Phys. Letters
**18**, 19 (1965).Google Scholar - 23.T. R. Koehler and N. R. Werthamer, Phys. Rev.
**A2074**(1971); and P. Gillissen and W. Biem, Z. Phys.**242**, 250 (1971).CrossRefGoogle Scholar - 24.T. R. Koehler and N. R. Werthamer, to be published.Google Scholar
- 25.H. R. Glyde and F. C. Khanna, to be published.Google Scholar
- 26.B. H. Brandow, Phys. Rev.
**A4**, 422 (1971).ADSGoogle Scholar - 27.R. A. Guyer in Solid State Physics, Vol. 23 (ed. by F. Seitz D. Turnball and H. Ehrenreich) (Academic Press, New York, 1969 ).Google Scholar
- 28.N. S. Gillis and T. R. Koehler, Phys. Rev. to be published.Google Scholar
- 29.T. R. Koehler and R. L. Gray, Bull. Am. Phys. Soc.
**16**, 439 (1971).Google Scholar - 30.R. C. Shukla and E. R. Cowley, Phys. Rev.
**B3**, 4055 (1971).ADSCrossRefGoogle Scholar