Spatial Dispersion Induced Birefringence in Cubic Semiconductors

  • P. Y. Yu
  • Manuel Cardona
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)


A procedure to calculate the lowest order spatial dispersion effects in the dielectric constant of a germanium-type semiconductor is presented. The contribution of the lowest direct edge (E0 E0 +A0), the E1 – E1 + Δ1 edge, and the Penn gap is given. These results are used to estimate the birefringence for light propagation along [110]. Good agreement with recent experimental results for Ge, GaAs, and Si is found.


Dielectric Constant Brillouin Zone Spatial Dispersion Penn Model Indirect Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Brust, J. C. Phillips, and F. Bassani, Phys. Rev. Letters 9, 94 (1962).Google Scholar
  2. 2.
    See for a review M. Cardona, J. of Research of the Nat. Bureau of Standards 74A, 253 (1970).Google Scholar
  3. 3.
    For a detailed discussion see M. Cardona, Proceedings of the 1971 Enrico Fermi Summer School, to be published.Google Scholar
  4. 4.
    M. I. Bell, Proceedings of the symposium on Electronic Density of States, Nat. Bureau of Standards, 1969, to be published.Google Scholar
  5. 5.
    J. A. Van Vechten, M. Cardona, D. E. Aspnes, and R. M. Martin, Proceedings of the 10th International Conference in the Physics of Semiconductors, Cambridge, Mass. 1970, p. 83.Google Scholar
  6. 6.
    T. Pastrnak and K. Vedam, Phys. Rev. 3, 2567 (1971)Google Scholar
  7. 7.
    V. M. Agranovich and V. L. Ginzburg, “Spatial Dispersion in Crystal Optics and the Theory of the Exciton”, (J. Wiley, New York, 1966 ).Google Scholar
  8. 8.
    H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).Google Scholar
  9. 9.
    G. Dresselhaus, A. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).Google Scholar
  10. 10.
    J. P. Walter and M. L. Cohen, Phys. Rev. 2, 1821 (1971).Google Scholar
  11. 11.
    P. Y. Yu and M. Cardona, Solid State Commum., in press.Google Scholar
  12. 12.
    P. Y. Yu, Ph.D. Thesis, Brown University, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • P. Y. Yu
    • 1
  • Manuel Cardona
    • 1
  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations