Recent KKR Band Calculations

  • Ulrich Rössler
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)


Among the computational methods for energy band calculations the KKR method has obtained an important place. The transparent physical concept of scattering on which this method is based has two immediate advantages. 1) In angular momentum representation the lattice geometry and the potential of the ions are separated, thus structure constants which are determined only by the lattice geometry can be calculated once and than be used in all crystals with same symmetry. 2) Energy eigenvalues converge rapidly with increasing angular momentum, thus the dimension of secular determinants is kept small. These advantages together with the simplicity of the muffin-tin approximation for the crystal potential made most recently possible energy band calculations for small gap semiconductors, semiconductors, ionic and van-der Waals crystals on which we report in section 3.


Energy Band Band Model Band Calculation Lattice Geometry Lower Conduction Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Computational methods in band theory, Plenum Press New York, London, 1971Google Scholar
  2. 2.
    A.R. Williams, S.M. Hu, D.W. Jepsen, Ref. 1, p. 157Google Scholar
  3. 3.
    O.K. Andersen, Ref. 1, p. 178Google Scholar
  4. 4.
    A. R. Williams, Phys.Rev. B1, 3417 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    M. Inoue, M. Okazaki, J. Phys. Soc. Japan 30, 1575 (1971)CrossRefGoogle Scholar
  6. 6.
    U. Rössler, Phys. Stat. Solidi 42, 345 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    N.O. Lipari, phys stat solidi 40, 691 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    H. Overhof, Phys. St at. Solidi 43, 575 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    H. Overhof,J.Treusch, Solid State Commun. 9, 53 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    E. Mohler, G. Schlögl, J. Treusch, Phys.Rev.Letters 27, 424 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    J. Rathje, Diplomarbeit, Marburg, 1971Google Scholar
  12. 12.
    M. Cardona, Phys.Rev. 129, 69 (1963)ADSCrossRefGoogle Scholar
  13. 13.
    D. Fröhlich, B. Staginnus, E. Schönherr, Phys.Rev. Letters 19, 1032 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Powell, W.E. Spicer, J.C. McMenamin, Phys.Rev. Letters 27, 97 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    H. Overhof, Phys. St at. Solidi 43, 221 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    H. Overhof, Phy s. St at. Solidi 45, 315 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    U. Rössler, Phys. St at. Solidi 45, 483 (1971)ADSCrossRefGoogle Scholar
  18. 18.
    R. Haensel, G. Keitel, P. Schreiber, Phys.Rev. 188, 1375 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    O. Schütz, U. Rössler, to be publishedGoogle Scholar
  20. 20.
    J. Hermanson, Phys,Rev. 166, 893 (1968)ADSCrossRefGoogle Scholar
  21. 21.
    O. Baldini, Phys.Rev. 128, 1562 (1962)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Ulrich Rössler
    • 1
  1. 1.Institut für theoretische Physik IIMarburgDeutschland

Personalised recommendations