Advertisement

Introduction to Computational Theoretical Chemistry

  • Robert N. Kortzeborn

Abstract

At this time there is every reason to believe that all chemistry is deductible from the laws of quantum mechanics. But since quantum mechanics is inherently a mathematical discipline, the chemist who is interested in “real chemistry” tends to shy away from its study. Chemistry, with all its divisions and subdivisions, such as organic, inorganic, physical, and analytical, is further basically divided into experimental and theoretical branches of study.

Keywords

Wave Function Quantum Mechanic Atomic Function Helium Atom Hamiltonian Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Mulliken, What are the electrons really doing in molecules? The Vortex, Cal. Sec. Am. Chem. Soc. (Spring 1960).Google Scholar
  2. 2.
    C. A. Coulson, Valence, Oxford University Press, London, 2nd ed., 1961.Google Scholar
  3. 3.
    J. H. Van Vleck and A. Sherman, The quantum theory of valence, Revs. Mod. Phys. 7, 167–228 (1935).CrossRefGoogle Scholar
  4. 4.
    R. G. Parr and F. O. Ellison, The quantum theory of valence, Ann. Rev. Phys. Chem. 6, 171–192 (1955). Also see other reviews on quantum theory in Vols. 1–12, Ann. Rev. Phys. Chem. CrossRefGoogle Scholar
  5. 5.
    G. G. Hall, Application of quantum mechanics in theoretical chemistry, Repts. Progr. Phys. 32, 1–32 (1959).CrossRefGoogle Scholar
  6. 6.
    C. C. J. Roothaan and R. S. Mulliken, Broken bottlenecks and the future of molecular quantum mechanics, Proc. Natl. Acad. Sci. U.S. 45, 394–398 (1959).CrossRefGoogle Scholar
  7. 7.
    S. F. Boys and G. B. Cook, Mathematical problems in the complete predictions of chemical phenomena, Rev. Mod. Phys. 32, 285–295 (1960).CrossRefGoogle Scholar
  8. 8.
    B. Bak, E. Clementi, and R. N. Kortzeborn, Structure, vibrational spectra, dipole moment, and stability of gaseous LiCN and LiNC, J. Chem. Phys. 52, 764–772 (1970).CrossRefGoogle Scholar
  9. 9.
    P. N. Noble and R. N. Kortzeborn, LCAO-MO-SCF studies of HF2- and the related unstable systems HF2 0 and HeF2, J. Chem. Phys. 53, 5375–5387 (1970).CrossRefGoogle Scholar
  10. 10.
    D. H. Christensen, R. N. Kortzeborn, B. Bak, and J. J. Led, Results of ab initio calculations on formamide, J. Chem. Phys. 53, 3912–3922 (1970).CrossRefGoogle Scholar
  11. 11.
    J. C. Slater, Solid-state and molecular theory group, Quart. Progr. Rept. No. 43 (January 15, 1962).Google Scholar
  12. 12.
    W. Kauzmann, Quantum Chemistry, Academic Press, New York, 1957.Google Scholar
  13. 13.
    L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, McGraw-Hill Book Co., Inc., New York and London, 1935.Google Scholar
  14. 14.
    H. Eyring, J. Walter, and G. Kimball, Quantum Chemistry, John Wiley and Sons, Inc., New York and London, 1960.Google Scholar
  15. 15.
    L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Addison-Wesley Publishing Co., Reading, Massachusetts, 1958.Google Scholar
  16. 16.
    L. Schiff, Quantum Mechanics, McGraw-Hill Book Co., Inc., New York, 1955.Google Scholar
  17. 17.
    J. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Massachusetts, 1961.Google Scholar
  18. 18.
    C. H. Wilcox, ed., Perturbation Theory and its Applications in Quantum Mechanics, John Wiley and Sons, Inc., New York, 1965.Google Scholar
  19. 19.
    V. Fock, Näherungsmethode zur Lösung des quantummechanischen Mehrkörperproblems, Z. Phys. 61, 126 (1930).CrossRefGoogle Scholar
  20. 20.
    A. C. Wahl, P. E. Cade, and C. C. J. Roothaan, The study of 2-center integrals useful in calculations on molecular structure. V. General methods for diatomic integrals applicable to digital computers, J. Chem. Phys. 41, 2578 (1964).CrossRefGoogle Scholar
  21. 21.
    C. J. Roothaan and P. S. Bagus, Methods in Computational Physics, Academic Press, Inc., New York, 1963, Vol. II.Google Scholar
  22. 22.
    D. O. Harris, G. Engerholm, and W. D. Gwinn, J. Chem. Phys. 43, 1515, 1965. This paper applies a well established mathematical method in a new way, which greatly facilitates the computer solution of many problems in quantum mechanics.CrossRefGoogle Scholar
  23. 23.
    F. J. Corbato and A. C. Switendeck, Methods in Computational Physics, Academic Press, Inc., New York, 1963, Vol. II.Google Scholar
  24. 24.
    A. D. McLean, IBM Research Center, San Jose, California (private communication).Google Scholar
  25. 25.
    R. N. Kortzeborn, The Virtual Computer and Its Importance to Scientists, IBM Data Processing Division, Palo Alto Scientific Center report in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Robert N. Kortzeborn
    • 1
  1. 1.IBM Scientific CenterPalo AltoUSA

Personalised recommendations