Advertisement

Chemotaxis of Animal Spermatozoa

  • R. L. Miller

Summary

Although the gametes of most animals are presumed to meet by chance, several mechanisms exist which serve to enhance the chances of contact.
  1. 1.

    The size of one gamete (egg) is increased as a target.

     
  2. 2.

    The other gamete (sperm) remains small and is usually highly motile, showing a persistence of direction. For any population, direction is random, however.

     
The mobility of the gametes, especially the sperm, may be modified in several ways to increase the probability of collision with the egg. All produce undirected behavior in the sperm.
  1. 1.

    “Thigmotaxis” or the tendency of the sperm to swim near surfaces.

     
  2. 2.

    Agglutination by egg associated substances.

     
  3. 3.

    Chemically decreasing motility.

     
  4. 4.

    Physically decreasing motility.

     
  5. 5.

    Production of aberrant motility.

     
Mechanism of direct guidance of sperm to eggs include:
  1. 1.

    Oriented egg coatings or micropyles.

     
  2. 2.

    Chemotaxis.

     

Directed sperm migration by means of a chemical gradient has been demonstrated in a number of marine hydroides. The sperm behavior during chemotaxis is compared to sperm behavior during undirected responses.

Keywords

Chemical Gradient Stimulus Source Sperm Swimming Sperm Chemotaxis Gradient Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balinsky, B. I. (1965). An Introduction to Embryology. 2nd Edition, Philadelphia, Saunders.Google Scholar
  2. Buller, A. H.R. (1903). Q. J. Micr. Sci. 46, 145.Google Scholar
  3. Brokaw, C.J. (1966). J. Exp. Biol. 45, 115.Google Scholar
  4. Dakin, W.J. and Fordham,M. G. C. (1924). J. Exp. Biol. 1, 103,Google Scholar
  5. Dan, J. C. (1950). Biol. Bull. 99, 412.PubMedCrossRefGoogle Scholar
  6. Dewitz J. (1886). Arch. ges. Physiol. 38, 358.CrossRefGoogle Scholar
  7. Dickmann, Z. (1963). J. Exp. Biol. 40, 1–5.PubMedGoogle Scholar
  8. Fraenkel, G. S. and Gunn, D.L. (1961). The Orientation of Animals. New York, Dover.Google Scholar
  9. Gray, J. (1955). J. Exp. Biol. 32, 802.Google Scholar
  10. Henking, H. (1888). Zeitschr. f. wiss. Zool. 46, 289.Google Scholar
  11. Jennings. H. S. (1962). Behavior of the Lower Organisms. Bloomington, Indiana University Press.Google Scholar
  12. Kille, R. A. (1962). Exp. Cell. Res. 20, 12–17.CrossRefGoogle Scholar
  13. Lillie, F.R. (1919). Problems of Fertilization. Chicago. University of Chicago Press.Google Scholar
  14. Lindahl, P. E. and Drevius, L. O. (1964). Exp. Cell. Res. 36, 632.PubMedCrossRefGoogle Scholar
  15. Machlis, L. and Rawitscher-Kunkel, E. (1967). Fertilization. New York, Academic Press, 1, 111.Google Scholar
  16. Metz, C. B. (1967). Fertilization. New York, Academic Press, 1, 163.Google Scholar
  17. Miller, R. L. (1966a). J. Exp. Zool. 162, 23.PubMedCrossRefGoogle Scholar
  18. Miller, R.L. (1966b). Am. Zool. 6, 509.Google Scholar
  19. Miller,R.L. (1970). J. Exp. Zool. 175, 493.CrossRefGoogle Scholar
  20. Miller, R.L. and Brokaw, C.J. (1970). J. Exp. Biol. 52, 699.Google Scholar
  21. Miller, R.L. and Nelson, L. (1962). Biol. Bull. 123, 477.CrossRefGoogle Scholar
  22. Morgan, T. H. (1927). Experimental Embryology. New York, Columbia University Press.Google Scholar
  23. Pfeffer, W. (1884). Untersuch, a. d. Botanische Inst, zu Tubingen 1, 363.Google Scholar
  24. Raper, J.R. (1952). Bot. Rev. 18, 447.CrossRefGoogle Scholar
  25. Rosen, W.G. (1962). Q. Rev. Biol. 37, 42.CrossRefGoogle Scholar
  26. Rothschild, L. (1956). Fertilization. London, Methuen and Co.Google Scholar
  27. Rothschild, L. (1963). Nature 198, 1221.CrossRefGoogle Scholar
  28. Satir, P. (1965a). J. Cell. Biol. 26, 805.PubMedCrossRefGoogle Scholar
  29. Satir, P. (1965b). Protoplasmatol. 3E, 1.Google Scholar
  30. Suzuki, R. (1961a). Annot. Zool. Japon. 34, 18.Google Scholar
  31. Suzuki, R. (1961b). Annot. Zool. Japon. 34, 24.Google Scholar
  32. Tyler, A. (1940). Biol. Bull. 78, 159.CrossRefGoogle Scholar
  33. Tyler, A. (1941). Biol. Bull. 81, 190.CrossRefGoogle Scholar
  34. Tyler, A. (1949)Am. Natur. 83, 105.CrossRefGoogle Scholar
  35. Tvler. A. (1959). Exp. Cell. Res., SuppL 7, 183.CrossRefGoogle Scholar
  36. Weiss, P. (1961). Exp. Cell. Res. Suppl. 8, 260.CrossRefGoogle Scholar
  37. Wiese, L. (1969). Fertilization. New York, Academic Press, 2, 135.Google Scholar
  38. Wilson, E. B. (1924). The Cell in Development and.Heredity. New York, Macmillan.Google Scholar
  39. Yanagimachi, R. (1957). Annot. Zool. Japon. 30, 114.Google Scholar
  40. Yanagimachi, R. and Kanoh, Y. (1953). J. Fac. Sci., Hokkaido Univ., Ser. 6, Zool. 11, 487.Google Scholar
  41. Zeigler, H. (1962a). Handbuch der Pflanzenphysiologie 17/2, 396.Google Scholar
  42. Zeigler, H. (1962b). Handbuch der Pflanzenphysiologie 17/2, 484.Google Scholar

Copyright information

© Plenum Publishing Company Ltd. 1973

Authors and Affiliations

  • R. L. Miller
    • 1
  1. 1.Department of BiologyTemple UniversityPhiladelphiaUSA

Personalised recommendations