• Julian J. Steyn
  • Sam S. Nargolwalla


A medium which responds informatively to the phenomena to which it is exposed is a potentially useful detector. An everyday example is the response of the human eye to visible light. The “eye” in a nuclear experiment is the radiation detector. This chapter focuses on radiation detectors frequently used to measure the radiations encountered in radiochemistry.


Pulse Height Proportional Counter Fano Factor Pulse Height Analyzer Photo Peak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Wilkinson, Ionization Chambers and Counters, Cambridge University Press (1950).Google Scholar
  2. 2.
    S. A. Korff, Electron and Nuclear Counters (2nd ed.), Van Nostrand, New York (1955).Google Scholar
  3. 3.
    C. E. Crouthamel, Applied Gamma-Ray Spectrometry, Pergamon Press, Oxford (1960); 2nd ed. (1970).Google Scholar
  4. 4.
    S. M. Shafroth (Ed.), Scintillation Spectroscopy of Gamma Radiation, Vol. 1, Gordon and Breach Science Publishers (1967).Google Scholar
  5. 5.
    D. Aliaga-Kelly and D. R. Nicoll, Recent developments in scintillation detectors, Nucl. Instr. Meth. 43:110 (1966).CrossRefGoogle Scholar
  6. 6.
    G. T. Ewan and A. J. Tavendale, High resolution studies of gamma-ray spectra using lithium drift germanium gamma-ray spectrometers, Can. J. Phys. 42:2286 (1964).ADSCrossRefGoogle Scholar
  7. 7.
    F. S. Goulding (Part I) and J. W. Mayer (Part II), Semiconductor detectors for nuclear spectrometry, I and II, Nucl. Instr. Meth. 43:55 (1966).CrossRefGoogle Scholar
  8. 8.
    J. M. Hollander, The impact of semiconductor detectors on gamma-ray and electron spectroscopy, Nucl. Instr. Meth. 43:65 (1966).CrossRefGoogle Scholar
  9. 9.
    T. Mulvey and A. J. Campbell, Proportional counters in X-ray spectro-chemical analysis, Brit. J. Appl. Phys. 9:406 (1958).ADSCrossRefGoogle Scholar
  10. 10.
    A. H. Jaffey, Solid angle subtended by a circular aperture at point and spread sources: Formulas and some tables, Rev. Sci. Instr. 25:4 (1954).CrossRefGoogle Scholar
  11. 11.
    A. V. H. Maskett, R. L. Macklin, and H. W. Schmitt, Tables of Solid Angles and Activations. I. Solid Angle Subtended by a Circular Disc; II. Solid Angle Subtended by a Cylinder; III. Activation of a Cylinder by a Point Source, U.S. Atomic Energy Commission ORNL-2170, Physics, Oak Ridge National Laboratory (1956).Google Scholar
  12. 12.
    S. S. Nargolwalla, Alpha and Beta Proportional Counting, Ontario Dept. of Health, Rad. Protection Lab., Internal report (1963).Google Scholar
  13. 13.
    J. B. Birks, The Theory and Practice of Scintillation Counting (Ist ed.), Pergamon Press, Oxford (1967).Google Scholar
  14. 14.
    C. E. Miner, A semiconductor detector cryostat, Nucl. Instr. Meth. 55:125 (1967).CrossRefGoogle Scholar
  15. 15.
    D. C. Camp, Applications and Optimizations of the Lithium-Drifted Germanium Detector Systems, UCRL-50156 (1967).Google Scholar
  16. 16.
    D. A. Bromley, Nuclear radiation detector, IRE Trans. Nucl. Sci. NS-9:3 (1962).Google Scholar
  17. 17.
    U. Fano, Ionization yield of Radiation, II. The fluctuations of the number of ions, Phys. Rev. 72:26 (1947).ADSCrossRefGoogle Scholar
  18. 18.
    S. O. W. Antman, D. A. Landis, and R. H. Pehl, Measurements of the Fano factor and the energy per hole-electron pair in germanium, Nucl. Instr. Meth. 40:272 (1966).CrossRefGoogle Scholar
  19. 19.
    P. Onno, New graph paper for the analysis of Gaussian distributions, Rev. Sci. Instr. 32:1253(1961).ADSCrossRefGoogle Scholar
  20. 20.
    J. A. Bearden, X-Ray Wavelengths, U.S. Atomic Energy Commission, NYO-10586 (1964).Google Scholar
  21. 21.
    P. Axel, Escape peak correction to gamma ray intensity measurements made with sodium iodide crystals, BNL-271 (T-44), (Sept. 1953); Intensity corrections for iodine X-rays escaping from sodium iodide scintillations crystals, Rev. Sci. Instr. 25:391 (1954).ADSCrossRefGoogle Scholar
  22. 22.
    J. Ungrin and M. W. Johns, Germanium X-ray escape peaks in the 40 to 411 keV range produced by small “windowless” Ge(Li) detectors, Nucl. Instr. Meth. 70:112 (1969).CrossRefGoogle Scholar
  23. 23.
    R. L. Heath, Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, Vols. I and II (2nd ed.), IDO-16880 (1964).Google Scholar
  24. 24.
    J. P. Balagna and S. B. Helnick, An Atlas of Gamma-Ray Spectra, LA-4312 (1970).Google Scholar
  25. 25.
    N. H. Lazar, R. C. Davis, and P. R. Bell, Peak efficiency of NaI, Nucleonics 12:52 (April 1956).Google Scholar
  26. 26.
    E. Storm, E. Gilbert, and H. Israel, Gamma Ray Absorption Coefficients for Elements 1 to 100 Derived from Theoretical Values of NBS, LASL-2237 (1958).Google Scholar
  27. 27.
    J. H. Hubbell, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV, NSRDS-NBS 29 (1969).Google Scholar
  28. 28.
    M. S. Freedman, T. B. Novey, F. T. Porter, and F. Wagner Jr., Correction for phosphor backscattering in electron scintillation spectrometry, Rev. Sci. Instr. 27:716 (1956).ADSCrossRefGoogle Scholar
  29. 29.
    G. D. O’Kelley (ed.), Application of Computers to Nuclear and Radiochemistry, Proceedings of a symposium, NAS-NS-3107 (1962).Google Scholar
  30. 30.
    J. J. Steyn and D. W. Harris, A method for semi-automatically generating NaI(Tl) spectrometer response function matrices, IEEE Trans. Nucl. Sci. NS-17:489 (1970).ADSCrossRefGoogle Scholar
  31. 31.
    M. Giannini, P. Oliva, and M. C. Ramorino, Monte Carlo Calculation of the Energy Loss Spectra for Gamma Rays in Cylindrical NaI(Tl) Crystals, Comitato Nazionale Energia Nucleare, RT/FI(69)15 (1969).Google Scholar
  32. 32.
    J. J. Steyn, R. Huang, and D. W. Harris, Numerical simulation of NaI(Tl) experimental response functions, ANS Transactions 14(1): 125 (1971).Google Scholar
  33. 33.
    J. J. Steyn and D. G. Andrews, Empirical photofractions for NaI(Tl) scintillation crystals, Nucl Instr. Meth. 68:118 (1969).CrossRefGoogle Scholar
  34. 34.
    D. Engelkemeir, Nonlinear response of NaI(Tl) to photons, Rev. Sci. Instr. 27:589 (1956).ADSCrossRefGoogle Scholar
  35. 35.
    J. J. Steyn, Backscatter of Normally Incident Gamma Photons from Semi-Infinite Media of Varying Atomic Number, Ph.D. thesis, Univ. of Toronto (1965).Google Scholar
  36. 36.
    J. T. Routti and S. G. Prussin, Photopeak Analysis of Semiconductor Gamma-Ray Spectra by Computer, UCRL-17672, Univ. of Calif., AEC Contract No. W7405-eng.-48 (1967).Google Scholar
  37. 37.
    R. G. Helmer, D. D. Metcalf, R. L. Heath, and G. A. Cazier, A Linear Least-Squares Fitting Program for the Analysis of Gamma-Ray Spectra Including a Gain-Shift Routine, IDO-17015(1964).Google Scholar
  38. 38.
    J. R. DeVoe, Radioactive Contamination of Materials Used in Scientific Research, Publication 895, National Academy of Sciences-National Research Council Report No. 34, (1961).Google Scholar
  39. 39.
    R. C. Hawking and W. J. Edwards, Apparatus for Routine Quantitative Estimation of Radionuclides by Gamma Scintillation Spectrometry, AECL-819 (1958).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Julian J. Steyn
    • 1
  • Sam S. Nargolwalla
    • 2
  1. 1.NUS CorporationRockvilleUSA
  2. 2.Scintrex, Ltd.ConcordUSA

Personalised recommendations