Advertisement

Timing Circuits

  • John A. M. Hoogenboom

Abstract

The measurement of time, or rather of time intervals, plays an important role in a variety of experimental methods used in nuclear physics and in its applications in chemistry. The function of a timing circuit is to determine the length of a time interval that is specified by two electric pulses, a “start” and a “stop” pulse.

Keywords

Output Pulse Input Pulse Pulse Height Pulse Height Analyzer Detector Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    E. Kowalski, Nuclear Electronics, Springer, Berlin (1970). A state-of-the-art book containing many references to original articles. See also L. J. Herbst, Electronics for Nuclear Particle Analysis, Oxford University Press, Oxford (1970).Google Scholar
  2. 2.
    R. E. Bell, Comparison of leading-edge and crossover timing in coincidence measurements, Nucl Instr. Meth. 42:211 (1966).CrossRefGoogle Scholar
  3. 3.
    P. R. Orman, A synchronizing discriminator for scintillation counter pulses, Nucl. Instr. Meth. 21:121 (1963). Describes zero-crossover detection with a tunnel diode. See also D. L. Wieber and H. W. Lefevre, IEEE Trans. Nucl. Sci. NS-13:406 (1966).CrossRefGoogle Scholar
  4. 4.
    M. Moszynski and B. Bengtson, Application of a pulse shape selection method to a true coaxial Ge(Li) detector for measurements of nanoseconds half-lives, Nucl. Instr. Meth. 80:233 (1970).CrossRefGoogle Scholar
  5. 5.
    The “Start-Stop” Type TAC is more fully discussed in E. Kowalski, Nuclear Electronics, Springer, Berlin (1970)250.Google Scholar
  6. 6.
    The “Overlap” type TAC is treated in E. Kowalski, Nuclear Electronics, Springer, Berlin (1970)256.Google Scholar
  7. 7.
    H. W. Lefevre and J. T. Russell, Vernier chronotron, Rev. Sci. Instr. 30:159 (1959).ADSCrossRefGoogle Scholar
  8. 7a.
    A system with relative stabilization is described in P. J. Kindlmann and J. Sunderland, Phase stabilized vernier chronotron, Rev. Sci. Instr. 37:445 (1966).ADSCrossRefGoogle Scholar
  9. 8.
    J. Aveynier and R. van Zurk, Vernier chronotron reflex, Nucl. Instr. Meth. 78:161 (1970).CrossRefGoogle Scholar
  10. 9.
    I. M. H. Pagden and J. C. Sutherland, Resolving power of gamma ray coincidence spectrometer using lithium drifted germanium detectors and its application to multiple radioisotope analysis, Anal. Chem. 42:383 (1970). This article proposes Ge(Li) coincidence spectrometry. Low-level coincidence spectroscopy with two NaI(Tl) detectors equipped with anti- Compton shields is discussed in Ref. 11.CrossRefGoogle Scholar
  11. 10.
    J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 495 (1964). This is the world’s standard on scintillation counting.Google Scholar
  12. 11.
    N. A. Wogman, R. W. Perkins, and J. H. Kaye, An all sodium iodide anticoincidence shielded multidimensional gamma-ray spectrometer for low-activity samples, Nucl. Instr. Meth., 74:197 (1969).CrossRefGoogle Scholar
  13. 11a.
    Treats the properties of a heavily shielded (60 m of concrete) double NaI(Tl) detector system with anti-Compton shields on both detectors. A similar system is described in B. A. Euler, D. F. Covell, and S. Yamamoto, A Comptonsuppressed coincidence gamma-ray scintillation spectrometer with large NaI(Tl) crystals, Nucl. Instr. Meth., 72:143(1969). See also (13).CrossRefGoogle Scholar
  14. 12.
    J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 500 (1964), and references cited there.Google Scholar
  15. 13.
    J. E. Draper and G. L. Smith, Small split NaI(Tl) annulus-Ge(Li) spectrometer for coincidence-anticoincidence with in-beam gammas, Nucl. Instr. Meth., 70:134 (1969). Describes a combined anti-Compton and pair spectrometer in which the center detector consists of a small Ge(Li) detector (0.5 cm3).CrossRefGoogle Scholar
  16. 14.
    J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, page 502 (1964), and references cited there.Google Scholar
  17. 15.
    J. Kantele and P. Suominen, A Simple summing Compton Ge(Li) spectrometer, Nucl. Instr. Meth., 56:351 (1967).CrossRefGoogle Scholar
  18. 15a.
    Two Ge(Li) detectors are used. The second detector is shielded from the source and detects the scattered quanta from the first detector. See also C. Broude et al., Nucl. Instr. Meth., 69:292 (1969).CrossRefGoogle Scholar
  19. 16.
    A. M. Hoogenboom, A new method in gamma-ray spectroscopy: A two crystal scintillation spectrometer with improved resolution, Nucl. Instr. Meth., 3:57 (1958). This is the original article on the sum-coincidence method.Google Scholar
  20. 17.
    See for example, D. E. Watt and D. Ramsden, High Sensitivity Counting Techniques, Pergamon Press, Oxford (1964).Google Scholar
  21. 17a.
    This monograph treats the subject broadly with many references. For high-sensitivity γ-ray detection, see also (11) and S. Tanaka, K. Sakamoto, and J. Takagi, An extremely low-level gamma-ray spectrometer, Nucl. Instr. Meth., 56:319 (1967).CrossRefGoogle Scholar
  22. 18a.
    D. E. Watt and D. Ramsden, High Sensitivity Counting Techniques, Pergamon Press, Oxford (1964), 155.Google Scholar
  23. 18b.
    J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, (1964), 268.Google Scholar
  24. 19.
    J. B. Birks, The Theory and Practice of Scintillation Counting, Pergamon Press, Oxford, (1964), 397.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • John A. M. Hoogenboom
    • 1
  1. 1.RijksuniversiteitUtrechtThe Netherlands

Personalised recommendations