Advertisement

The Hydrogen Economy

  • D. P. Gregory
  • D. Y. C. Ng
  • G. M. Long

Abstract

Although electrical energy today is considered to be a universally convenient energy source that is instantly available at the turn of a switch, we tend to take for granted the additional availability of two other energy sources—natural gas and oil-gasoline. These chemical energy sources have two outstanding operational advantages over electricity: (1) they can be stored up in varying amounts, either within their distribution networks or in portable containers; and (2) transportation of energy over long distances is far cheaper for natural gas or oil than for electrical power. Present trends in the use of energy accentuate these differences, as the user tends to concentrate his use of power into smaller peak periods of the day, and as the intense concentration of population in local areas strains the electrical transmission network. Moreover, as society is becoming increasingly conscious of the need to protect the environment it lives in, electric power cables are being forced underground at phenomenal expense, to lie out of sight in company with the existing natural gas and oil pipelines. Today’s increasing demands for electrical power are resulting in an increasing potential for atmospheric pollution resulting from the need to burn more “dirty” fuels at the electric power stations.

Keywords

Fuel Cell Fossil Fuel Electrical Energy Hydrogen Production Burning Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allis-Chalmers Manufacturing Company, Design Study of Hydrogen Production by Electrolysis, Publication No. ACSDS0106643, Milwaukee, October 1966.Google Scholar
  2. 2.
    Bechtel Corporation, Engineering and Economic Feasibility Study for a Combination Nuclear Power and Desalting Plant, Phases I and II, TID 22330, U.S. Atomic Energy Commission, Division of Technical Information, Washington, D.C., 1965.Google Scholar
  3. 3.
    R. E. Blanco et al, Chem. Eng. Progr. 63 (1967) 46; 63 (1967) 49.Google Scholar
  4. 4.
    J. O’M. Bockris and S. Srinivasan, Fuel Cells; Their Electrochemistry, McGraw-Hill, New York, 1969.Google Scholar
  5. 5.
    J. E. Browning, Chem. Eng. 75 (1968) 88.Google Scholar
  6. 6.
    A. F. Burstall, S.A.E. Proc. 22 (1927) 365.Google Scholar
  7. 7.
    Compressed Gas Assoc., Inc., in Handbook of Compressed Gases, Reinhold, New York, 1966, pp. 94–100.Google Scholar
  8. 8.
    R. L. Costa and P. G. Grimes, Chem. Eng. Progr. Sym. Ser. 63 (1967) No. 71, 45.Google Scholar
  9. 9.
    B. E. Eakin, in American Gas Association Operating Section Proceedings—1960, CEP-60-5.Google Scholar
  10. 10.
    M. A. Elliott, Paper No. ASME-NAFTC-1 presented at the North American Fuel Technology Conference, Ottawa, May 31–June 3, 1970.Google Scholar
  11. 11.
    Federal Power Commission, 1970 National Power Survey, Part 3, Washington, D.C., 1970.Google Scholar
  12. 12.
    J. E. Funk and R. M. Reinstrom, I & EC Process Design Develop. 5 (1966) 336.CrossRefGoogle Scholar
  13. 13.
    J. Giner, Electrochim. Acta 8 (1963) 857.CrossRefGoogle Scholar
  14. 14.
    J. C. Griffiths, C. W. Thompson, and E. J. Weber, A.G.A. Res. Bull. 96 (1963) 18.Google Scholar
  15. 15.
    A. T. Grisenthwaite, Trans. Inst. Chem. Eng. (London) 34 (1956) 235.Google Scholar
  16. 16.
    J. Grumer, M. E. Harris, and V. R. Rowe, U.S. Bureau of Mines Report Invest. No. 5225, Washington, D.C., 1956.Google Scholar
  17. 17.
    L. W. der Haar and J. E. Vogel, World Petrol Congr. Proc. 6th, Sect. 4, 383-94, Frankfurt/ Main, 1963.Google Scholar
  18. 18.
    C. A. Hampel, Ed., in The Encyclopedia of Electrochemistry, Reinhold, New York, 1964, pp. 1156–1160.Google Scholar
  19. 19.
    A. B. Hart, Design Eng, February (1970) 71.Google Scholar
  20. 20.
    W. Juda and D. M. Moulton, Chem. Eng. Progr. Sym. Ser. 63 (1967) No. 71, 59.Google Scholar
  21. 21.
    V. J. Kavlich, B. S. Lee, and F. C. Schora, paper presented at the 3rd Joint Meeting of the Instituto de Ingenieros Quimicons de Puerto Rico and the American Institute of Chemical Engineers, San Juan, Puerto Rico, May 17–20, 1970.Google Scholar
  22. 22.
    R. O. King, W. A. Wallace, and B. Mahapatra, Can. J. Res. 26F (1948) 264.CrossRefGoogle Scholar
  23. 23.
    R. E. Kirk and D. F. Othmer, in Encyclopedia of Chemical Technology, 2nd Ed., Interscience Publishers, New York, 1966, Vol. 11, pp. 338–379.Google Scholar
  24. 24.
    H. H. Landsberg and S. H. Schurr, Energy in the U.S., Uses and Policy Issues, Random House, New York, 1960.Google Scholar
  25. 25.
    B. S. Lee, paper presented at the American Power Conference, Chicago, April 21–23, 1970.Google Scholar
  26. 26.
    H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries, John Wiley and Sons, New York, 1968.Google Scholar
  27. 27.
    H. R. Linden, paper presented at the Institute on Exploration and Economics of the Petroleum Industry, International Oil and Gas Educational Center, The Southwestern Legal Foundation, Dallas, March 4 - 6, 1970.Google Scholar
  28. 28.
    C. L. Mantell, Electrochemical Engineering, McGraw-Hill, New York, 1960.Google Scholar
  29. 29.
    C. Marks, E. A. Rishavy, and F. A. Wyczalek, S.A.E. Paper 670176 (1967).Google Scholar
  30. 30.
    C. P. Marun and W. L. Slater, World Petrol Congr. Proc. 6th, Sect. 4, 373-82, Frankfurt/Main, 1963.Google Scholar
  31. 31.
    P. Meadows and J. De Carlo, in Mineral Facts and Problems, U.S. Bureau of Mines, Washington, D.C., 1970.Google Scholar
  32. 32.
    G. A. Mills and J. S. Tosh, Paper No. ASME-NAFTC-4 presented at the North American Fuel Technology Conference, Ottawa, May 31–June 3, 1970.Google Scholar
  33. 33.
    A. G. Milne and J. H. Mattby, Proc. Inst. Elec. Eng. 114 (1967) 745.CrossRefGoogle Scholar
  34. 34.
    J. E. Mrochek, in W. W. Grigorieff, Ed., Abundant Nuclear Energy, U.S. Atomic Energy Commission, Washington, D.C., 1969, pp. 107–122.Google Scholar
  35. 35.
    U.S.) National Advisors Committee for Aeronautics, NACA Rep. No. 535, Washington, D.C., 1935.Google Scholar
  36. 36.
    U.S.) National Aeronautics and Space Administration, NASA Technical Memorandum TMX-52454, Washington, D.C., 1968.Google Scholar
  37. 37.
    U.S.) National Air Pollution Control Administration, NAPCA Contract No. EHS70-103, Washington, D.C., 1970.Google Scholar
  38. 38.
    National Fire Protection Association, Standard NFPA No. 50A, in National Fire Codes, Boston, 1969–70, Vol. 2.Google Scholar
  39. 39.
    R. M. Reed, Trans. Amer. Inst. Chem. Eng. 41 (1945) 453.Google Scholar
  40. 40.
    A. C. Riddiford, Electrochim. Acta 4 (1961) 170.Google Scholar
  41. 41.
    W. F. Schaffer, Jr., USAEC Report ORNL-TM-1629, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1968.Google Scholar
  42. 42.
    S. H. Schurr and B. C. Netschert, Energy in the American Economy 1850–1975, John Hopkins Press, Baltimore, 1960.Google Scholar
  43. 43.
    A. M. Squires, in W. W. Grigorieff, Ed., Abundant Nuclear Energy, U.S. Atomic Energy Commission, Washington, D.C., 1969, pp. 181–196.Google Scholar
  44. 44C.
    Starr, in Proceedings of 4th Intersociety Energy Conversion Engineering Conference, Washington, D.C., 1969, p. 1072.Google Scholar
  45. 45.
    G. R. Strimbeck et al, in American Gas Association Operating Section Proceedings—1952, pp. 778–817.Google Scholar
  46. 46.
    S. Srinivasan, H. Wroblowa, and J. O’M. Bockris, Advances in Catalysis, Academic Press, New York, 1967, Vol. 17, pp. 351–418.Google Scholar
  47. 47.
    M. W. Thring, The Science of Flames and Furnaces, John Wiley and Sons, New York, 1962, pp. 156–167.Google Scholar
  48. 48.
    D. J. Rose, Nucl. Fusion 9 (1969) 183.Google Scholar
  49. 49.
    U.S. Bureau of Census, Statistical Abstracts of the U.S.: 1970, 91st ed., U.S. Government Printing Office, Washington, D.C., 1970.Google Scholar
  50. 50.
    C. G. Von Fredersdorff, in American Gas Association Operating Section Proceedings—1959, CEP-59-18.Google Scholar
  51. 51.
    C. G. Von Fredersdorff and E. J. Pyrcioch, in American Gas Association Operating Section Proceedings—1952, pp. 685–701.Google Scholar
  52. 52.
    K. R. Williams, Advan. Sci. 22 (1966) 617.Google Scholar
  53. 53.
    K. R. Williams and D. P. Gregory, J. Electrochem. Soc. 110 (1963) 209.CrossRefGoogle Scholar
  54. 54.
    M. Beller, L. G. Epel, and M. Steinberg, Chem. Eng. Progr. Sym. Ser. 63 (1967) No. 71, 31.Google Scholar
  55. 55.
    G. de Beni and C. Marchetti, Euro Spectra 9 (1970) 46.Google Scholar
  56. 56.
    P. Harteck and S. Dondes, Nucleonics 14 (1956) 22.Google Scholar
  57. 57.
    G. Juppe, Euro Spectra 8 (1969) 39.Google Scholar
  58. 58.
    K. Z. Morgan, Elec. World 174 (1970) 132.Google Scholar
  59. 59.
    U.S. Congress, Joint Economic Committee, The Economy Energy, and the Environment, 72, by the Environmental Policy Division Legislative Reference Service of the Library of Congress, U.S. Government Printing Office, Washington, D.C., 1970.Google Scholar
  60. 60.
    C. G. Von Fredersdorff, private communication, 1959.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • D. P. Gregory
    • 1
  • D. Y. C. Ng
    • 1
  • G. M. Long
    • 1
  1. 1.Institute of Gas TechnologyChicagoUSA

Personalised recommendations