Light Scattering and Birefringence in BaTiO3 Ceramics

  • W. A. AlbersJr.
  • M. Kaplit
Conference paper


In the last few years Land and his coworkers at the Sandia Corporation Laboratories have demonstrated that electrically-controlled birefringence and light scattering can be realized in lead-zirconate-titanate (PZT) ferroelectric ceramics.1–7 The electrically controlled birefringence is related to the change induced by an electric field in the statistically-averaged birefringence of the crystallites comprising the ceramic. The electrically controlled light scattering has been interpreted by Nettleton in terms of domain wall displacement.8 By appropriate choice of modified PZT ceramics and device configuration, it has been possible to devise electrically controlled light shutters, spectral filters, optical memories, light modulators, variable contrast black-and-white displays and multicolor displays.1–4 Subsequently other laboratories have investigated various aspects of image storage and display based on the electrically-controlled birefringence in modified PZT ferroelectric ceramics.9–12 Meanwhile Heartling at Sandia was able to improve the optical transparency of PZT by the addition of various modifiers, culminating in his preparation of the first optically transparent ferroelectric ceramic, lead lanthanum zirconate titanate (PLZT).13–16 The development of the transparent PLZT may well enable the electrically controlled birefringence in these ferroelectric ceramics to realize practical application.


Ferroelectric Ceramic Scattered Light Intensity Electro Optic Effect BaTiOa Ceramic Electrooptic Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Land, 1967 International Electron Devices Meeting, Washington, D. C., Sandia Laboratories Reprint SC-R-67–1219, October, 1967.Google Scholar
  2. 2.
    C. E. Land and P. D. Thacher, Proc. IEEE 57, 751(1969).CrossRefGoogle Scholar
  3. 3.
    P. D. Thacher and C. E. Land, IEEE Trans. Elec. Devices ED 16, 515(1969).CrossRefGoogle Scholar
  4. 4.
    C. E. Land and R. Holland, IEEE Spectrum 7, 71(1970).CrossRefGoogle Scholar
  5. 5.
    C. E. Land and G. H. Heartling, J. Phys. Soc. Japan (suppl.) 28, 96(1970).Google Scholar
  6. 6.
    C. E. Land, International J. Nondestructive Testing 1, 315(1970).Google Scholar
  7. 7.
    C. E. Land and P. D. Thacher, this volume, p. 171.Google Scholar
  8. 8.
    R. E. Nettleton, J. Appl. Phys. 39, 3646(1968).CrossRefGoogle Scholar
  9. 9.
    J. R. Maldonado and A. H. Meitzler, IEEE Trans. Elec. Devices ED 17, 148(1970).CrossRefGoogle Scholar
  10. 10.
    A. H. Meitzler, J. R. Maldonado and D. B. Fraser, Bell System Tech. J. 49, 953(1970).Google Scholar
  11. 11.
    W. C. Stewart and L. S. Cosentino, Ferroelectrics 1, 149(1970).CrossRefGoogle Scholar
  12. 12.
    J. R. Maldonado and A. H. Meitzler, to be published.Google Scholar
  13. 13.
    G. H. Heartling, Am. Ceram. Soc. Bull 43, 875(1964).Google Scholar
  14. 14.
    G. H. Heartling and W. J. Zimmer, Am. Ceram. Soc. Bull. 45, 1084(1966).Google Scholar
  15. 15.
    G. H. Heartling, Am. Ceram. Soc. Bull. 49, 564(1970).Google Scholar
  16. 16.
    G. H. Heartling and C. E. Land, submitted to J. Am. Ceram. Soc.Google Scholar
  17. 17.
    W. D. Kingery, Introduction to Ceramics (John Wiley and Sons, Inc., New York, 1960).Google Scholar
  18. 18.
    R. W. Rice, “Hot Forming of Ceramics” in Ultrafine-Grain Ceramics, J. J. Burke, N. L. Reed and V. Weiss, Eds. (Syracuse University Press, Syracuse, New York, 1968), p. 211.Google Scholar
  19. 19.
    K. Okazaki and K. Takahashi, J. Phys. Soc. Japan (suppl) 28, 329(1970).Google Scholar
  20. 20.
    H. Van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, New York, 1957).Google Scholar
  21. 21.
    I. L. Fabelinski, Molecular Scattering of Light (Plenum Press, New York, 1968).Google Scholar
  22. 22.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1970).Google Scholar
  23. 23.
    F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan Co., New York, 1962).Google Scholar
  24. 24.
    V. J. Tennery and J. C. Venerus, Am. Ceram. Soc. Bull. 36, 59(1957).Google Scholar
  25. 25.
    See for example A. Yariv, Quantum Electronics (John Wiley and Sons, Inc., New York, 1967).Google Scholar
  26. 26.
    J. F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1957).MATHGoogle Scholar
  27. 27.
    I. P. Kaminov and E. H. Turner, Appl. Optics 5, 1612(1966).CrossRefGoogle Scholar
  28. 28.
    I. P. Kaminov, “Electrooptic Materials” in Ferroelectricity, E. F. Weller, Ed. (Elsevier Publishing Co., Amsterdam, 1967).Google Scholar
  29. 29.
    See for example N. Uchida and T. Ikeda, Jap. J. Appl Phys. 6, 1079(1967).CrossRefGoogle Scholar
  30. 30.
    M. Marutake and T. Ikeda, J. Phys. Soc. Japan 12, 233(1957).CrossRefGoogle Scholar
  31. 31.
    H. G. Baerwald, Phys. Rev. 105, 480(1957).MATHCrossRefGoogle Scholar
  32. 32.
    M. Marutake, J. Phys. Soc. Japan 11, 807(1956).CrossRefGoogle Scholar
  33. 33.
    M. Deri, Ferroelectric Ceramics (MacLaren and Sons Ltd., London, 1966).Google Scholar
  34. 34.
    C. A. Miller, J. Materials Sci. 3, 463(1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • W. A. AlbersJr.
    • 1
  • M. Kaplit
    • 1
  1. 1.Physics Department, Research LaboratoriesGeneral Motors CorporationWarrenUSA

Personalised recommendations