Nature and Control of Biochemical Pathways for the Origin of Prostatic Polyamines

  • H. G. Williams-Ashman


Feeling greatly honored by this opportunity to join with many other of the admirers, pupils, and friends of William Wallace Scott in paying homage to his outstanding contributions to investigative and clinical urology, I would like to summarize some recent experiments on the biosynthesis of spermine and related amines in the prostate gland and other mammalian tissues. These investigations were initiated during the time I was privileged to serve under Dr. Scott as a staff member of the James Buchanan Brady Urological Institute at Hopkins. The ultimate aim of these studies—to gain insight into the functional roles of the high concentrations of spermine found in the prostate and its secretions in man and certain other mammals—has yet to be achieved. I hope the following paragraphs will show, however, that in delineating for the first time the series of linked enzyme reactions responsible for the production of polyamines in the prostate, a number of novel and previously unsuspected types of biochemical processes have been uncovered, many of which may be of general metabolic significance in nearly all higher animal cells. The findings to be presented were obtained in collaboration with Drs. Anthony Pegg, Dean Lockwood, Juhani Jänne, and Gordon Coppoc.


Mammalian Tissue Ornithine Decarboxylase Soluble Extract Purine Nucleoside Phosphorylase Ventral Prostate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Williams-Ashman, H. G. In On Cancer and Hormones: Essays in Experimental Biology, pp. 325–346, (1962).Google Scholar
  2. 2.
    Williams-Ashman, H. G. Invest. Urol. 2: 605, 1965.PubMedGoogle Scholar
  3. 3.
    Williams-Ashman, H. G., Pegg, A. E., and Lockwood, D. H. Advan. Enzyme Regulation 7: 291, 1969.CrossRefGoogle Scholar
  4. 4.
    Williams-Ashman, H. G., and Lockwood, D. H. Ann N. Y. Acad. Sci. 171: 882, 1970.CrossRefGoogle Scholar
  5. 5.
    Tabor, H., and Tabor, C. W. Physiol. Rev. 16: 245, 1964.Google Scholar
  6. 6.
    Herbst, E. J., and Bachrach, U. (eds.) Metabolism and biological functions of polyamines. Ann. N.Y. Acad. Sci. 171:691–1009, 1970.CrossRefGoogle Scholar
  7. 7.
    Caldarera, C. M., Moruzzi, M. S., Barbiroli, B., and Moruzzi, G. Biochem. Biophys. Res. Commun. 33: 266, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Moulton, B. C., and Leonard, S. L. Endocrinology 84: 1461, 1969.PubMedCrossRefGoogle Scholar
  9. 9.
    Jänne, J. Acta Physiol. Scand. Suppl. 300: 1, 1967.PubMedGoogle Scholar
  10. 10.
    Siimes, M. Acta Physiol. Scand. Suppl. 298: 1, 1967PubMedGoogle Scholar
  11. 11.
    Tabor, H., Rosenthal, S. M., and Tabor, C. W. J. Biol. Chem. 233: 907, 1958.PubMedGoogle Scholar
  12. 12.
    Pegg, A.E., and Williams-Ashman, H. G. J. Biol. Chem. 244: 682, 1969PubMedGoogle Scholar
  13. 13.
    Pegg, A.E., and Williams-Ashman, H. G. Arch. Biochem. Bipohys. 137: 156, 1970.Google Scholar
  14. 14.
    Pegg, A.E., and Williams-Ashman, H. G. Biochem J. 108: 533, 1968.PubMedGoogle Scholar
  15. 15.
    Jänne, J., and Raina, A. Acta Chem. Scand. 22: 1349, 1968.PubMedCrossRefGoogle Scholar
  16. 16.
    Jänne, J., and Williams-Ashman, H. G. J. Biol. Chem. 246: 1725, 1971.PubMedGoogle Scholar
  17. 17.
    Jänne, J., and Williams-Ashman, H. G. Biochem. J. 119: 595, 1970.PubMedGoogle Scholar
  18. 18.
    Pegg, A.E., Lockwood, D. H., and Williams-Ashman, H. G. Biochem. J. 117: 17, 1970.PubMedGoogle Scholar
  19. 19.
    Jänne, J., Raina, A., and Siimes, M. Biochim. Biophys. Acta 166: 419, 1968.PubMedGoogle Scholar
  20. 20.
    Russell, D. H., and Snyder, S. H. Proc. Natl. Acad. Sci. 60: 1420, 1968.PubMedCrossRefGoogle Scholar
  21. 21.
    Schrock, T.R., Oakman, N.J., and Bucher, N. L. R. Biochim. Biophys. Acta 204: 564, 1970.Google Scholar
  22. 22.
    Stastny, M., and Cohen S. Biochim. Biophys. Acta 204: 578, 1970.PubMedGoogle Scholar
  23. 23.
    Cohen, S., O’Malley, B. W., and Stastny, M. Science 170: 336, 1970.PubMedCrossRefGoogle Scholar
  24. 24.
    Synder, S.H., Kreuz, D. S., Medina, V. J., and Russell, D. H. Ann N.Y. Acad. Sci. 171: 749, 1970.CrossRefGoogle Scholar
  25. 25.
    Wickner, R. B., Tabor, C. W., and Tabor, H. J. Biol. Chem. 245: 2132, 1970.PubMedGoogle Scholar
  26. 26.
    Jänne, J., and Williams-Ashman, H. G. Biochem. Biophys. Res. Commun. 42: 222, 1971.Google Scholar
  27. 27.
    Jänne, J., Schenone, A., and Williams-Ashman, H. G. Biochem. Biophys. Res. Commun. 42: 758, 1971.Google Scholar
  28. 28.
    Jänne, J., and Williams-Ashman, H. G. Unpublished observations.Google Scholar
  29. 29.
    Raina, A., and Hannonen, P. Acta Chem. Scand. 24: 3061, 1970.PubMedCrossRefGoogle Scholar
  30. 30.
    Pegg, A.E., and Williams-Ashman, H. G. Biochem. J. 115: 241, 1969.PubMedGoogle Scholar
  31. 31.
    Pegg, A.E. Biochem. Biophys. Acta 177: 261, 1969.Google Scholar
  32. 32.
    Raina, A., Jänne, J., and Siimes, M. Acta Chem. Scand. 18: 1804, 1964.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • H. G. Williams-Ashman
    • 1
  1. 1.The Ben May Laboratory for Cancer Research and Department of BiochemistryUniversity of ChicagoChicagoUSA

Personalised recommendations