Advertisement

Ions in Flames

  • H. F. Calcote

Abstract

Originally, studies of ionization in flames were motivated by the observation that in hydrocarbon flames, the ion concentration far exceeds the value expected if ionization were due to thermal processes alone(1,2) (see Table I). The objectives of these studies were to explain the source of nonequilibrium ionization and to explore links between flame ionization and the mechanism of flame propagation. An explanation of the source of flame ions was found in the process of chemi-ionization.(2) This led to further studies of the details of ionic reactions which occur in flames and of flame reactions which can be induced by the addition of foreign elements.

Keywords

Kcal Mole Alkali Metal Flame Front Electron Attachment Combustion Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. F. Calcote, Mechanisms for the formation of ions in flames, Combust. Flame 1, 385–403 (1957).CrossRefGoogle Scholar
  2. 2.
    H. F. Calcote, in “Ionization in High-Temperature Gases, Progress in Astronautics and Aeronautics” (K. E. Shuler, ed.), Vol. 12, pp. 107–144, Academic Press, New York (1963).Google Scholar
  3. 3.
    T. M. Sugden, in “Annual Review of Physical Chemistry, Vol. 13, pp. 369–390, Annual Reviews, Palo Alto (1962).Google Scholar
  4. 4.
    K. E. Shuler (ed.), “Ionization in High-Temperature Gases, Progress in Astronautics and Aeronautics,” Vol. 12, Academic Press, New York (1963).Google Scholar
  5. 5.
    H. F. Calcote, in “Fundamental Studies of Ions and Plasmas, ” Vol. I, pp. 1–42 (AGARD Conf. Proc. No. 8, September 1965 ).Google Scholar
  6. 6.
    W. J. Miller, Ionization in combustion processes, Oxidation and Combustion Reviews 3, 97–127 (1968).Google Scholar
  7. 7.
    J. Lawton and F. J. Weinberg, “Electrical Aspects of Combustion,” Oxford University Press, London (1969).Google Scholar
  8. 8.
    J. Peeters, C. Vinckier, and A. Van Tiggelen, Formation and Behaviour of Chemi-ions in Flames, Oxidation and Combustion Reviews 4, 93–132 (1969).Google Scholar
  9. 9.
    H. F. Calcote and W. J. Miller, in “Chemical Reactions under Plasma Conditions” (M. Vanugopalan, ed), pp. 327–371, Interscience Publishers, New York (1971).Google Scholar
  10. 10.
    A. Fontijn, in “Progress in Reaction Kinetics,” Vol. 6 (K. R. Jennings and R. B. Cundall eds.), pp. 75–141, Pergamon Press, New York (1971).Google Scholar
  11. 11.
    H. F. Calcote and D. E. Jensen, in “Ion-Molecule Reactions in the Gas Phase,” (Advances in Chemistry Series, No. 58), pp. 291–314, American Chemical Society, Washington D.C. (1966).Google Scholar
  12. 12.
    P. F. Knewstubb and T. M. Sugden, Mass-spectrometric studies of ionization in flames. I. The spectrometer and its application to ionization in hydrogen flames, Proc. Roy. Soc. A255, 520–537 (1960).CrossRefGoogle Scholar
  13. 13.
    A. N. Hayhurst and T. M. Sugden, Mass spectrometry of flames, Proc. Roy, Soc. A293, 36–50 (1966).Google Scholar
  14. 14.
    P. J. Padley and T. M. Sugden, in “Eighth Symp. (Int.) on Combustion,” pp. 164–179, Williams and Wilkins, Baltimore (1962).Google Scholar
  15. 15.
    D. E. Jensen and W. J. Miller, in “Electron Attachment and Compound Formation in Flames. IV. Negative Ion and Compound Formation in Flames Containing Potassium and Molybdenum, Thirteenth Symp. (Int.) on Combustion,” pp. 363–730, The Combustion Institute, Pittsburgh (1971).Google Scholar
  16. 16.
    R. M. Fristrom and A. A. Westenberg, “Flame Structure,” McGraw-Hill, New York (1965).Google Scholar
  17. 17.
    D. E. Jensen and S. C. Kurzius, Determination of positive ion concentrations in high-velocity laminar flames, Combust Flame 13, 219–222 (1969).CrossRefGoogle Scholar
  18. 18.
    B. E. L. Travers and H. Williams, in “Tenth Symp. (Int.) on Combustion,” pp. 657–672, The Combustion Institute, Pittsburgh (1965).Google Scholar
  19. 19.
    J. R. Cozens and A. von Engel. Theory of the double probe at high gas pressure, Int. J. Electronics 19, 61–68 (1965).CrossRefGoogle Scholar
  20. 20.
    H. F. Calcote, in “Ninth Symp. (Int.) on Combustion,” pp. 622–633, Academic Press, New York (1963).Google Scholar
  21. 21.
    G. Maise and A. J. Sabadell, Electrostatic Probe Measurements in Solid Propellant Rocket Exhausts, AIAA J. 8, 895–901 (1970).CrossRefGoogle Scholar
  22. 22.
    J. C. Sternberg, W. S. Galloway, and D. T. L. Jones, in “Gas Chromatography” (N. Brenner, J. E. Cullen, and M. D. Weiss, eds.), pp. 231–267, Academic Press, London (1962).Google Scholar
  23. 23.
    A. J. Borgers, in “Tenth Symp. (Int.) on Combustion,” pp. 627–637, The Combustion Institute, Pittsburgh (1965).Google Scholar
  24. 24.
    H. Williams, in “Seventh Symp. (Int.) on Combustion,” pp. 269–276, Butterworths, London (1959).Google Scholar
  25. 25.
    E. M. Bulewicz and P. J. Padley, in “Ninth Symp. (Int.) on Combustion,” pp. 638–646, Academic Press, New York (1963).Google Scholar
  26. 26.
    V. L. Granatstein and S. J. Buchsbaum, in “Proc. of the Symp. on Turbulence of Fluids and Plasmas” (Microwave Research Institute Symposia Series, Vol. XVIII, J. Fox, ed.), pp. 231–249, Polytechnic Press, New York (1969).Google Scholar
  27. 27.
    H. Belcher and T. M. Sugden, Studies on the ionization produced by the metallic salts in flames. II. Reactions governed by ionic equilibria and coal-gas/air flames containing alkali metal salts, Proc. Roy. Soc., A202, 17–39 (1950).CrossRefGoogle Scholar
  28. 28.
    W. W. Balwanz, in “Tenth Symp. (Int.) on Combustion, pp. 685–697, The Combustion Institute, Pittsburgh (1965).Google Scholar
  29. 29.
    S. C. Kurzius, F. H. Raab, and R. L. Revolinski, Ionization suppression in high-temperature low-pressure plasmas by electrophilic vapors and sprays” (U), AeroChem TP-230, Final Report, December 1969. ( Confidential. )Google Scholar
  30. 30.
    D. E. Jensen and P. J. Padley, in “Eleventh Symp. (Int.) on Combustion,” pp. 351–358, The Combustion Institute, Pittsburgh (1967).Google Scholar
  31. 31.
    H. F. Calcote and J. L. Reuter, Mass-spectrometric study of ion profiles in low-pressure flames, J. Chem. Phys. 38, 310–317 (1963).CrossRefGoogle Scholar
  32. 32.
    H. F. Calcote, S. C. Kurzius, and W. J. Miller, in “Tenth Symp. (Int.) on Combustion,” pp. 605–619, The Combustion Institute, Pittsburgh (1965).Google Scholar
  33. 33.
    Tj. Hollander, P. J. Kalif, and C. T. J. Alkemade, Ionization rate constants of alkali metals in CO flames, J. Chem. Phys. 39, 2558–2564 (1963).CrossRefGoogle Scholar
  34. 34.
    D. E. Jensen and P. J. Padley, Kinetics of ionization of the alkali metals in H2 + O2 + N2 flames, Trans. Faraday Soc. 62, 2140–2149 (1966).CrossRefGoogle Scholar
  35. 35.
    Tj. Hollander, Photometric measurements on the deviations from the equilibrium state in flames, AIAA J. 6, 385–393 (1968).CrossRefGoogle Scholar
  36. 36.
    H. F. Calcote, in “Third Symp. on combustion, flame, and explosion phenomena,” pp. 245–253, Williams and Wilkins, Baltimore (1949).Google Scholar
  37. 37.
    K. Schofield and T. M. Sugden, in “Tenth Symp. (Int.) on Combustion,” pp. 589–604, The Combustion Institute, Pittsburgh (1965).Google Scholar
  38. 38.
    D. E. Jensen, Production of electrons from alkaline earths in flames: equilibrium and kinetic considerations, Combust. Flame 12, 261–268 (1968).CrossRefGoogle Scholar
  39. 39.
    E. M. Bulewicz and T. M. Sugden, The recombination of hydrogen atoms and hydroxyl radicals in hydrogen flame gases, Trans. Faraday Soc. 54, 1855–1860 (1958).CrossRefGoogle Scholar
  40. 40.
    H. F. Calcote, in “Eighth Symp. (Int.) on Combustion,” pp. 184–199, Williams and Wilkins, Baltimore (1962).Google Scholar
  41. 41.
    I. R. Hurle, T. M. Sugden, and G. B. Nutt, in “Twelfth Symp. (Int.) on Combustion,” pp. 387–394, The Combustion Institute, Pittsburgh (1969).Google Scholar
  42. 42.
    T. Kinbara and K. Noda, in “Twelfth Symp. (Int.) on Combustion,” pp. 395–403, The Combustion Institute, Pittsburgh (1969).Google Scholar
  43. 43.
    K. H. Becker, D. Kley, and R. J. Norstrom, in “Twelfth Symp. (Int.) on Combustion,” pp. 405–413, The Combustion Institute, Pittsburgh (1969).Google Scholar
  44. 44.
    J. Peeters and A. Van Tiggelen, in “Twelfth Symp. (Int.) on Combustion,” pp. 437–446, The Combustion Institute, Pittsburgh (1969).Google Scholar
  45. 45.
    J. A. Green and T. M. Sugden, in “Ninth Symp. (Int.) on Combustion,” pp. 607–621, Academic Press, New York (1963).Google Scholar
  46. 46.
    C. W. Hand and G. B. Kistiakowski, Ionization accompanying the acetylene—oxygen reaction in shock waves, J. Chem. Phys. 37, 1239–1245 (1962).CrossRefGoogle Scholar
  47. 47.
    H. F. Calcote and I. R. King, in “Fifth Symp. (Int.) on Combustion,” pp. 423–434, Reinhold, New York (1955).Google Scholar
  48. 48.
    I. R. King, Comparison of ionization and electronic excitation in flames, J. Chem. Phys. 31, 855 (1959).CrossRefGoogle Scholar
  49. 49.
    A. Van Tiggelen, in “Ionization in High-Temperature Gases, Progress in Astronautics and Aeronautics” (K. E. Shuler, ed.), Vol. 12, pp. 165–196, Academic Press, New York (1963).Google Scholar
  50. 50.
    A. Fontijn and G. L. Baughman, Chemi-ionization in the room-temperature reaction of oxygen atoms with acetylene, J. Chem. Phys. 38, 1784–1785 (1963).CrossRefGoogle Scholar
  51. 51.
    A. Fontijn, W. J. Miller, and J. M. Hogan, in “Tenth Symp. (Int.) on Combustion,” pp. 545–560, The Combustion Institute, Pittsburgh (1965).Google Scholar
  52. 52.
    C. A. Arrington, W. Brennen, G. P. Glass, J. V. Michael, and H. Niki, Reactions of atomic oxygen with acetylene. I. Kinetics and mechanisms, J. Chem. Phys. 43, 525–532 (1965).CrossRefGoogle Scholar
  53. 53.
    H. Niki, E. E. Daby, and B. Weinstock, Chemiionization in the room-temperature reaction of carbon suboxide with atomic hydrogen and oxygen, paper presented at the 156th National Meeting of the American Chemical Society, Atlantic City, September 1968.Google Scholar
  54. 54.
    S. C. Kurzius and M. Boudart, Kinetics of the branching step in the hydrogen-oxygen reaction, Combust. Flame 12, 477–491 (1968).CrossRefGoogle Scholar
  55. 55.
    R. P. Porter, A. H. Clark, W. E. Kaskan, and W. E. Browne, in “Eleventh Symp. (Int.) on Combustion,” pp. 907–915. The Combustion Institute, Pittsburgh (1967).Google Scholar
  56. 56.
    R. R. Burke, Splitting of electron cyclotron resonance signals produced during chemiionization, J. Chem. Phys. 52, 2164–2165 (1970).CrossRefGoogle Scholar
  57. 57.
    A. Feugier and A. Van Tiggelen, in “Tenth Symp. (Int.) on Combustion,” pp. 621–624, The Combustion Institute, Pittsburgh (1965).Google Scholar
  58. 58.
    J. A. Green, in “Fundamental Studies of Ions and Plasmas” (H. D. Wilsted, ed.), Vol. 1, pp. 191–214 (AGARD Conf. Proc. No. 8, September 1965 ).Google Scholar
  59. 59.
    P. F. Knewstubb, in “Tenth Symp. (Int.) on Combustion,” p. 623, The Combustion Institute, Pittsburgh (1965).Google Scholar
  60. 60.
    G. S. James and G. P. Glass, Some aspects of acetylene oxidation, J. Chem. Phys. 50, 2268–2269 (1969).CrossRefGoogle Scholar
  61. 61.
    H. F. Calcote, in “Dynamics of Conducting Gases, Proc. of the Third Biennial Gas-Dynamics Symp.,” pp. 36–47, Northwestern University Press, Evanston (1960).Google Scholar
  62. 62.
    Ye. S. Semenov and A. S. Sokolik, Study of ionization in spherical flames by the method of probe characteristics, Zh. Tekh. Fiz. (USSR) 32, 1074–1083 (1962).Google Scholar
  63. 63.
    I. R. King, Recombination of ions in flames, J. Chem. Phys. 37, 74–80 (1962).CrossRefGoogle Scholar
  64. 64.
    G. Wortberg, in “Tenth Symp. (Int.) on Combustion,” pp. 651–655, The Combustion Institute, Pittsburgh (1965).Google Scholar
  65. 65.
    D. Bradley and K. J. Matthews, in “Eleventh Symp. (Int.) on Combustion,” pp. 359–368, The Combustion Institute, Pittsburgh (1967).Google Scholar
  66. 66.
    E. N. Taran and V. I. Tverdokhlebov, Some electrical properties of a rarefied acetylene air flame with an admixture of alkali metal salts, High Temperature 4, 160–165 (1966).Google Scholar
  67. 67.
    L. N. Wilson and E. W. Evans, Electron recombination in hydrocarbon-oxygen reactions behind shock waves, J. Chem. Phys. 46, 859–863 (1967).CrossRefGoogle Scholar
  68. 68.
    I. R. King, Recombination rates of alkali metal ions, J. Chem. Phys. 36, 553–554 (1962).CrossRefGoogle Scholar
  69. 69.
    P. F. Knewstubb and T. M. Sugden, Observations on the kinetics of the ionization of alkali metals in flame gases, Trans Faraday Soc. 54, 372–380 (1958).CrossRefGoogle Scholar
  70. 70.
    R. G. Soundy and H. Williams, in “Fundamental Studies of Ions and Plasmas” (H. D. Wilsted, ed.), Vol. I, pp. 161–189 (AGARD Conf. Proc. No. 8, September 1965 ).Google Scholar
  71. 71.
    A. N. Hayhurst and T. M. Sugden, The ionization processes associated with metallic additives in flame gases, paper presented at the 20th Int. Symp. on Properties and Applications of Low Temperature Plasmas, IUPAC, Moscow, 1965.Google Scholar
  72. 72.
    R. Kelly and P. J. Padley, Use of a rotating single probe in studies of ionization of metal additives to premixed flames. Part I. Measurement of total positive ion concentrations and ionization of gallium, indium, and thallium, Trans. Faraday Soc. 65, 355–366 (1969).CrossRefGoogle Scholar
  73. 73.
    W. J. Miller, in “Eleventh Symp. (Int.) on Combustion,” pp. 311–320, The Combustion Institute, Pittsburgh (1967).Google Scholar
  74. 74.
    J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, “Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions,” National Standard Reference Data Series-National Bureau of Standards-26 (1969).Google Scholar
  75. 75.
    M. A. Haney and J. L. Franklin, Excess energies in mass spectra of some oxygen-containing organic compounds, Trans. Faraday Soc. 65, 1794–1804 (1969).CrossRefGoogle Scholar
  76. 76.
    C. S. Matthews and P. Warneck, Heats of formation of CHOP and C3H3+ by photo-ionization, J. Chem. Phys. 51, 854–855 (1969).CrossRefGoogle Scholar
  77. 77.
    J. H. Futrell and T. O. Tiernan, Mean OH,(CHO+) from several molecules produced by impact of 70–100-eV electrons, J. Chem. Phys. 51, 5183–5185 (1969).CrossRefGoogle Scholar
  78. 78.
    M. A. Haney and J. L. Franklin, Heats of formation of H3O+, H3S+, and NH4+ by electron impact, J. Chem. Phys. 50, 2028–2031 (1969).CrossRefGoogle Scholar
  79. 79.
    M. A. Haney and J. L. Franklin, Mass spectrometric determination of the proton affinities of various molecules, J. Phys. Chem. 73, 4328–4331 (1969).CrossRefGoogle Scholar
  80. 80.
    R. M. Fristrom and A. A. Westenberg, in “Eighth Symp. (Int.) on Combustion,” pp. 438–448, Williams and Wilkins, Baltimore (1962).Google Scholar
  81. 81.
    H. Pritchard and A. G. Harrison, Ion-molecule reactions of oxygenated species. Proton-transfer reactions involving CHO’, J. Chem. Phys. 48, 5623–5630 (1968).CrossRefGoogle Scholar
  82. 82.
    G. P. Glass, G. B. Kistiakowsky, J. V. Michael, and H. Niki, Mechanism of the acetylene-oxygen reaction in shock waves, J. Chem. Phys. 42, 608–621 (1965).CrossRefGoogle Scholar
  83. 83.
    G. P. Glass, G. B. Kistiakowsky, J. V. Michael, and H. Niki, in “Tenth Symp. (Int.) on Combustion,” pp. 513–522, The Combustion Institute, Pittsburgh (1965).Google Scholar
  84. 84.
    D. E. Jensen, Formation of SnOH+ in flames, J. Chem. Phys. 51, 4674–4675 (1969).CrossRefGoogle Scholar
  85. 85.
    A. Van Tiggelen and S. DeJaegere, Experimental study of chemiionization, Final Report, AF-EOAR-65–82, University of Louvain, Belgium, May 1967.Google Scholar
  86. 86.
    B. R. Turner and J. A. Rutherford, Electronic and ionic reactions in atmospheric gases, Gulf General Atomic Report, DASA 2398, January 1970.Google Scholar
  87. 87.
    E. M. Bulewicz and P. J. Padley, Suggested origin of the anomalous line-reversed temperatures in the reaction zone of hydrocarbon flames, Combust. Flame 5, 331–340 (1961).CrossRefGoogle Scholar
  88. 88.
    K. S. B. Addecott and C. W. Nutt, Mechanism of smoke reduction by metal compounds, presented at 158th National Meeting of American Chemical Society, New York, September 7–12, 1969.Google Scholar
  89. 89.
    J. B. Howard, in “Twelfth Symp. (Int.) on Combustion,” pp. 877–887, The Combustion Institute, Pittsburgh (1969).Google Scholar
  90. 90.
    E. R. Place and F. J. Weinberg, in “Eleventh Symp. (Int.) on Combustion,” pp. 245–255, The Combustion Institute, Pittsburgh (1967).Google Scholar
  91. 91.
    W. J. Miller, Ionization in combustion processes, Oxidation and Combustion Reviews 3, 97–127 (1968).Google Scholar
  92. 92.
    E. M. Bulewicz and P. J. Padley, Behaviour of electron acceptors in low-pressure acetylene oxygen flames, Trans. Faraday Soc. 65, 186–194 (1969).CrossRefGoogle Scholar
  93. 93.
    R. M. Mills, Flame inhibition with electron attachment as the first step, Combust. Flame 12, 513–520 (1968).CrossRefGoogle Scholar
  94. 94.
    A. N. Hayhurst and T. M. Sugden, Effect of halogens on the ionization of alkali-laden hydrogen and acetylene flames. Part 2-Results and derived rate constants, Trans. Faraday Soc. 63, 1375–1384 (1967).CrossRefGoogle Scholar
  95. 95.
    D. E. Jensen, Electron attachment and compound formation in flames. I. Electron affinity of BO2 and heats of formation of alkali metal metaborates, Trans. Faraday Soc. 65, 2123–2132 (1969).CrossRefGoogle Scholar
  96. 96.
    D. E. Jensen and W. J. Miller, Electron attachment and compound formation in flames. III. Negative ion and compound formation in flames containing potassium and tungsten, J. Chem. Phys. 53, 3287–3292 (1970).CrossRefGoogle Scholar
  97. 97.
    JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Michigan (continuously updated).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • H. F. Calcote
    • 1
  1. 1.AeroChem Research Laboratories, Inc.Sybron CorporationPrincetonUSA

Personalised recommendations