Advertisement

Electrical Discharges

  • Stanley A. Studniarz

Abstract

The steady-state discharge is a copious source of ion-neutral reactions, which in turn determine some of the chemical and physical properties of the electrical discharge. A complete understanding of these processes would enable one to trace the history of an ion from its formation from a neutral species through subsequent reactions to, finally, electron-ion recombination at the walls of the discharge tube. These processes are of interest because they affect the nature of the discharge by changing the translational energy, mobility, and the electron-ion recombination efficiency of the charge carriers. They may also produce some of the neutral products of the discharge.

Keywords

Glow Discharge Discharge Tube Positive Column Microwave Discharge Radial Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Shahin, in “Chemical Reactions in Electrical Discharges” (Advances in Chemistry Series, No. 80, B. D. Blaustein, ed.), Chapter 4, pp. 48–58, American Chemical Society, Washington, D.C. (1969).Google Scholar
  2. 2.
    B. D. Blaustein, (Ed.), “Chemical Reactions in Electrical Discharges” (Advances in Chemistry Series, No. 80 ), American Chemical Society, Washington, D.C. (1969).Google Scholar
  3. 3.
    H. W. Drawin, in “Mass Spectrometry of Plasmas” (W. Lochte-Holtgreven, ed.), Chapter 13, pp. 777–841, North-Holland Publishing Co., Amsterdam (1964).Google Scholar
  4. 4.
    M. Pahl, Neure Ergebnisse über Sekundarprozesse langsamer Ionen in Gasen, Ergebn. Exakt. Naturw. 34, 182–235 (1962).Google Scholar
  5. 5.
    P. F. Knewstubb, in “Mass Spectrometry of Organic Ions” (F. W. McLafferty, ed.), Chapter 6, pp. 255–307, Academic Press, New York (1963).Google Scholar
  6. 6.
    P. L. Spedding, Industrial Research Fellow Report No. 5, Chemical reactions in non-disruptive electric discharges, The Chemical Engineer, 1969, CE17–CE50.Google Scholar
  7. 7.
    C. E. Webb, A new technique for measurement of radial distribution of excited species in plasmas and its application to capillary discharges in argon, J. Appl. Phys. 39 (12), 5541–5470 (1968).Google Scholar
  8. 8.
    G. Bekefi, “Radiation Processes in Plasmas,” John Wiley and Sons, New York (1966).Google Scholar
  9. 9.
    H. R. Griem, in “Plasma Physics in Theory and Applications” (W. B. Kunkel, ed.), Chapter 9, pp. 278–297, McGraw-Hill Book Co., New York (1966).Google Scholar
  10. 10.
    R. G. Fowler, in “Discharges and Plasma Physics” (S. C. Haydon, ed.), Chapter 13, pp. 193–203, University of New England, Armdale (1964).Google Scholar
  11. 11.
    D. Robinson and P. D. Lenn, Plasma diagnostics by spectroscopic methods, App[. Opt. 6 (6), 983–1000 (1967).Google Scholar
  12. 12.
    R. G. Fowler, in “Handbuch der Physik” (S. Flugge, ed.), pp. 209–253, Springer-Verlag, Berlin (1956).Google Scholar
  13. 13.
    F. Allario and N. Wainfan, Electric field distribution in pulsed high-frequency current density discharges in helium and helium—hydrogen mixtures, J. Appl. Phys. 40 (2), 675–681 (1969).Google Scholar
  14. 14.
    S. C. Brown, “Introduction to Electrical Discharges in Gases,” John Wiley and Sons, New York, (1966).Google Scholar
  15. 15.
    H. M. Mott-Smith and I. Langmuir, The theory of collectors in gaseous discharges, Phys. Rev. 28, 727–763 (1926).Google Scholar
  16. 16.
    H. Eiber, Bestimmung von Ionenmassen bei Gasdrücken bis zu einigen Torr mittels eines hochfrequenzgespeisten Siebgitters, Z. Ang. Physik 15 (5), 461–463 (1963).Google Scholar
  17. 17.
    R. L. Hickok, Plasma density measurement by molecular ion breakup, Rev. Sci. Instr. 38, 142–143 (1967).Google Scholar
  18. 18.
    D. P. Duclos, Proton beam technique for measuring the ion density in a plasma, Rev. Sci. Instr. 36 (6), 806–809 (1965).Google Scholar
  19. 19.
    C. A. McDowell, “Mass Spectrometry,” McGraw-Hill Book Co., New York (1963).Google Scholar
  20. 20.
    F. A. White, “Mass Spectrometry in Science and Technology,” John Wiley and Sons, New York (1968).Google Scholar
  21. 21.
    R. Jayaram, “Mass Spectrometry, Theory and Applications,” Plenum Press, New York (1966).Google Scholar
  22. 22.
    John Roboz, “Mass Spectrometry, Instrumentation and Techniques,” Interscience Publishers, New York (1968).Google Scholar
  23. 23.
    W. Blauth, “Dynamic Mass Spectrometers,” American Elsevier, New York (1966).Google Scholar
  24. 24.
    M. Mosharrafa and H. J. Oskam, Application of mass spectrometry to the study of gaseous plasmas, Physica 32, 1759–1765 (1966).Google Scholar
  25. 25.
    F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida, Microwave discharge cavities operating at 2450 MHz, Rev. Sci. Instr. 36 (3), 294–298 (1965).Google Scholar
  26. 26.
    D. G. Andersen, R. A. Gerber, and G. F. Sauter, Method of producing extremely small holes in glass walls, Rev. Sci. Instr. 35, 412 (1964).Google Scholar
  27. 27.
    H. F. Wellenstein, C. H. Turner, and W. W. Robertson, Technique for producing extremely thin walls and small holes in glass tubing, Rev. Sci. Instr. 39 (3), 410–411 (1968).Google Scholar
  28. 28.
    D. G. Bills and A. A. Evett, Glass, a disturbing factor in physical measurements. J. Appl. Phys. 30 (4), 564–567 (1959).Google Scholar
  29. 29.
    F. H. Shair, Gas purification by means of cataphoresis in a radial glow discharge, Chem. Eng. Sci. 24, 443–450 (1969).Google Scholar
  30. 30.
    J. P. Gaur and I. M. Chanin, Ionic analysis of cataphoresis in He-Ne mixtures, J. Appl. Phys. 40 (1), 256–264 (1969).Google Scholar
  31. 31.
    H. J. Oskam, Pressure dependence of the cataphoresis effect in the rare gases, J. Appl. Phys. 34, 711–712 (1963).Google Scholar
  32. 32.
    J. Freudenthal, Cataphoresis and collision processes in low pressure discharges, Physica 36, 365–376 (1967).Google Scholar
  33. 33.
    V. R. Mittelstadt and H. J. Oskam, Applications of cataphoresis effect in the preparation of gas-filled tubes, Rev. Sci. Instr. 32, 1408 (1961).Google Scholar
  34. 34.
    R. Riesz and G. H. Dieke, The analysis and purification of rare gases by means of the electrical discharges, J. Appl. Phys. 25 (2), 196–201 (1954).Google Scholar
  35. 35.
    W. Schottky, Diffusionstheorie der positiven Säule, Physik. Z. 25, 635–640 (1924).Google Scholar
  36. 36.
    G. Francis, in “Handbuch der Physik” (S. Flugge, ed.) Vol. XXII, 53–208, Springer-Verlag, Berlin (1959).Google Scholar
  37. 37.
    M. Pahl, Ambipolar Effusion aus der positiven Säule, Z. Naturforsch. 12a, 632–642 (1957).Google Scholar
  38. 38.
    M. Pahl, Massenspektrometrische Untersuchungen an der positiven Säule in Ar, Ar-He und Ar-H2 Gemischen, Z. Naturforsch. 18a, 1276–1283 (1963).Google Scholar
  39. 39.
    M. Schmidt, Massenspektrometrische Untersuchungen an der positiven Säule der Stickstoff-Glimmentladung, Behr. Plasma Phys. 6, 147–163 (1966).Google Scholar
  40. 40.
    J. Wilhelm, Zu radialen Trägerdichteverteilung in Säulen mit mehreren Arten positiver Ionen, Ann. Physik 7 (5), 129–143 (1960).Google Scholar
  41. 41.
    J. Wilhelm, Anwendung der Schottkyschen Diffusiontheorie auf Entladungen mit mehreren lonenarten und angeregten Neutralteilchen, Z. Physik 154, 361–375 (1959).Google Scholar
  42. 42.
    A. von Engle, “Ionized Gases,” Clarendon Press, Oxford (1955).Google Scholar
  43. 43.
    U. Weimer, Experimentelle Untersuchungen über die ambipolare Effusion aus der positiven Säule, Z. Naturforsch. 13a, 278–285 (1958).Google Scholar
  44. 44.
    G. Hinzpeter, Untersuchungen zur “Ambipolaren Effusion der Ladungsträger aus der positiven Säule einer Niederdruck-Glimmentladung,” Ann. Physik 7 (17), 343–355 (1966).Google Scholar
  45. 45.
    W. B. Kunkel and M. N. Rosenbluth, in “Plasma Physics in Theory and Applications” (W. B. Kunkel, ed.), Chapter 1, pp. 1–19, McGraw-Hill Book Co., New York (1966).Google Scholar
  46. 46.
    P. F. Knewstubb and A. W. Tickner, Mass spectrometry of ions in glow discharges, 1. Apparatus and its application to the positive column in rare gases, J. Chem. Phys. 36 (3), 674–683 (1962).Google Scholar
  47. 47.
    M. Pahl and U. Weimer, Zur Massenspektrometrie an Glimmentladungen, Z. Naturforsch. 13a, 745–753 (1958).Google Scholar
  48. 48.
    P. H. Knewstubb and A. W. Tickner, Mass spectrometry of ions in glow discharges IV. Water vapor, J. Chem. Phys. 38 (2), 464–469 (1963).Google Scholar
  49. 49.
    P. H. Dawson and A. W. Tickner, Ion Clusters in the ammonia glow discharges, J. Chem. Phys. 40 (12), 3745–3746 (1964).Google Scholar
  50. 50.
    D. K. Böhme and J. M. Goodings, Ion sampling considerations for a discharge plasma of nitrogen, J. Appl. Phys. 37 (11), 4261–4268 (1966).Google Scholar
  51. 51.
    D. K. Böhme and J. M. Goodings, Mass spectrometric sampling probe for discharge plasmas, Rev. Sci. Instr. 37 (3), 362–366 (1966).Google Scholar
  52. 52.
    S. A. Studniarz and J. L. Franklin, Ion-molecule reactions in a 50-MHz discharge, J. Chem. Phys. 49 (6), 2652–2659 (1968).Google Scholar
  53. 53.
    J. L. Franklin, S. A. Studniarz, and P. K. Ghosh, Translational energy distributions of electrons and positive ions in plasma of microwave discharges of He, Ne, and Ar, J. Appl. Phys. 39 (4), 2052–2061 (1968).Google Scholar
  54. 54.
    F. H. Field and M. S. B. Munson, Reactions of gaseous ions XIV. Mass spectrometer studies of methane at pressures to 2 Torr, J. Am. Chem. Soc. 87, 3289–3294 (1965).Google Scholar
  55. 55.
    E. E. Ferguson, F. C. Fehsenfield, and A. L. Schmeltekopf, Laboratory measurements of ionospheric ion-molecule reactions, Space Research VII, 135–140 (1966).Google Scholar
  56. 56.
    C. E. Melton, Jr., Study by mass spectroscopy of the decomposition of ammonia by ionizing radiation in a wide-range radiolysis source, J. Chem. Phys. 45 (12), 4414–4424 (1966).Google Scholar
  57. 57.
    I. B. Ortenburger, M. Hertzberg, and R. A. Ogg, Jr., Secondary reactions in a gas discharge, J. Chem. Phys. 33 (1), 579–583 (1960).Google Scholar
  58. 58.
    E. W. McDaniel, “Collision Phenomena in Ionized Gases,” p. 257, John Wiley and Sons, New York (1964).Google Scholar
  59. 59.
    H. Löb, Energieverteilung der Argon und Wasserstoffionen aus einer Hockfrequenzionenquelle, Z. Naturforsch. 16a, 67–75 (1961).Google Scholar
  60. 60.
    G. Hinzpeter, Messung der aus einer Glimmentladung effundierenden Ladungstrager, in “3rd Czech. Conf. on Electronics and Vacuum Physics, Transactions,” pp. 97–101. Academia Publishing House, Prague (1965).Google Scholar
  61. 61.
    G. Brederlow. Massenspektrometrische Untersuchungen der aus der positiven Säule von Sauerstoff-Glimmentladungen effundierenden und extrahierten Ladungsträger, Ann. Physik 7 (5), 414–428 (1960).Google Scholar
  62. 62.
    V. Martitovits, Die Anwendung des Hochfrequenz-Massenspektrometer zur Untersuchung der Glimmentladung, in “3rd Czech. Conf. on Electronics and Vacuum Physics, Transactions,” pp. 103–105, Academia Publishing House, Prague (1965).Google Scholar
  63. 63.
    J. Y. Wada and H. Heil, Observation of the ion energy spectra in the positive column, in “Proc. of the Seventh Int. Conf. on Phenomena in Ionized Gases,” Vol. III, pp. 247–250, Belgrad (1966).Google Scholar
  64. 64.
    J. Y. Wada and H. Heil, Electron energy spectra in neon, xenon, and helium-neon laser discharges, J. Quantum Electronics QE-1 (8), 327–335 (1965).Google Scholar
  65. 65.
    O. Tüxen, Massenspektrographische Untersuchungen negativer Ionen in Gasentladungen bei höheren Drucken, Z. Physik 103, 463–485 (1936).Google Scholar
  66. 66.
    R. L. Boyd, HeZ+ in the helium discharge, Proc. Phys. Soc. (London) A63, 543–544 (1950).Google Scholar
  67. 67.
    R. L. Boyd, and D. Morris, A radiofrequency probe for the mass spectrometric analysis of ion concentration, Proc. Phys. Soc. (London) A68 (1), 1–10 (1955).Google Scholar
  68. 68.
    M. Pahl und U. Weimer, Zur Bildung von HeZ+ und Ne, + in der stationären positiven Niederdrucksäule, Z. Naturdorsch. 13a, 753–757 (1958).Google Scholar
  69. D. Morris, Molecular ions in discharges of the inert gases, Proc. Phys. Soc. (London) A68 ,11–17 (1955).Google Scholar
  70. 70.
    M. Pahl, Zur Bildung von Molekülionen in stationären Edelgasentladungen, Z. Naturforsch. 14a, 239–246 (1959).Google Scholar
  71. 71.
    M. Pahl, Über die Bildung von Are+ in der positiven Säule, Physik. Verhandl. 9 (10), 185 (1963).Google Scholar
  72. 72.
    P. F. Knewstubb and A. W. Tickner, Mass spectroscopy of ions in glow discharges. II. Negative glow in rare gases. J. Chem. Phys. 36 (3), 684–693 (1961).Google Scholar
  73. 73.
    M. Pahl und U. Weimer, Massenspektrometrischem Nachweis des Molekelions (HeNe+) in der positiven Säule, Naturwiss. 44, 487 (1957).Google Scholar
  74. 74.
    M. Pahl und U. Weimer, Massenspektrometrische Untersuchungen über die Bildung von (HeNe+) in der positiven Säule, Z. Naturforsch. 12a, 926–931 (1957).Google Scholar
  75. 75.
    M. Pahl und U. Weimer, Die Reaktion HeZ+ + Ne’ -. Ne’ + 2He in der positiven Säule, Z. Naturforsch. 13a, 50–51 (1958).Google Scholar
  76. 76.
    J. L. Gilkinson, H. Held, and L. M. Chanin, Measurement of ionic species present in rf discharges of argon and argon-cesium, J. Appl. Phys. 40 (5), 2350–2356 (1969).Google Scholar
  77. 77.
    M. M. Shahin, Ion-molecule interaction in the cathode region of a glow discharge, J. Chem. Phys. 43 (5), 1798–1805 (1965).Google Scholar
  78. 78.
    W. D. Davis and T. A. Vanderslice, Ion energies at the cathode of a glow discharge, Phys. Rev. 131 (1), 219–228 (1963).Google Scholar
  79. 79.
    R. M. Bashirova and A. V. Bondarenko, Investigation of the energy spectrum of positive ions incident on the cathode in an anomalous glow discharge, Izv. VUZ Radiofiz. 8 (4), 784–793 (1965).Google Scholar
  80. 80.
    A. V. Bondarenko and M. A. Lebedev, Mass composition of high-energy ions bonbarding the cathode in an anomalous glow discharge, Soviet Phys.-Technical Physics 12 (6), 774–777 (1967).Google Scholar
  81. 81.
    M. J. Druyvestyn, Neon-helium bands, Nature, 128, 1076–1077 (1931).Google Scholar
  82. 82.
    W. B. Hurt and W. W. Robertson, Atomic and molecular emission in the negative glow of a helium discharge, J. Chem. Phys. 42, 2 (1965).Google Scholar
  83. 83.
    W. R. Henderson, F. A. Matsen, and W. W. Robertson, Spectroscopic investigation of the helium-neon molecule, J. Chem. Phys. 43 (4), 1290–1295 (1965).Google Scholar
  84. 84.
    G. F. Weston, Glow discharge characteristics of helium-neon mixtures, British J. Appl. Phys. 1 (10), 523–526 (1959).Google Scholar
  85. 85.
    J. M. Anderson, Quenching of the negative glow by microwaves in cold cathode discharges, Phys. Rev. 108, 898–899 (1957).Google Scholar
  86. 86.
    R. E. Huffman, J. C. Larrabee, and Y. Tanaka, Rare gas continuum light sources for photoelectric scanning in the vacuum ultraviolet Appl. Opt. 4 (12), 1581–1588 (1965).Google Scholar
  87. 87.
    R. L. F. Boyd and N. D. Twiddy, Electron energy distribution in plasmas 11. Hydrogen, Proc. Royal Soc. (London) A259, 145–158 (1960).Google Scholar
  88. 88.
    C. J. Braesfield, Triatomic hydrogen as an emitter of the secondary spectrum, Phys. Rev. 31, 52–58 (1928).Google Scholar
  89. 89.
    O. Luhr, Triatomic ions in mixtures of hydrogen isotopes, J. Chem. Phys. 3, 146–149 (1935).Google Scholar
  90. 90.
    M. Schmidt, Mass spectrometric investigation of column plasma of hydrogen low-pressure glow discharge, Beitr, Plasma Phys. 9, 11–27 (1969).Google Scholar
  91. 91.
    H. D. Beckey and H. Dreeskamp, Anreichung isotoper Moleküle in der Gleichstrom-Glimmentladung. III. Der Primäreffekt. Massenspektrometrische Bestimmung der relativen Ionenhäufigkeiten im Entladungsplasma, Z. Naturforsch. 9a, 735–740 (1954).Google Scholar
  92. 92.
    P. H. Dawson and A. W. Tickner, Mass spectrometry of ions in glow discharges; Applications to H2–D2 exchange reaction, J. Chem. Phys. 45 (11), 4330–4336 (1966).Google Scholar
  93. 93.
    M. Yamane, Hydrogen ions in the positive column of a hydrogen discharge, J. Chem. Phys. 49 (10), 4624–4632 (1968).Google Scholar
  94. 94.
    P. F. Dawson and A. W. Tickner, Detection of H5+ in the hydrogen glow discharge, J. Chem. Phys. 37, 672–673 (1962).Google Scholar
  95. 95.
    K. Bethge and E. Heinicke, Eine Penning-Ionenquelle für negative Lithium Ionen, Nucl. Instr. Methods 30, 293–286 (1964).Google Scholar
  96. 96.
    E. Heinicke, K. Bethge, and H. Baumann, A universal ion source for tandem accelerators, Nucl. Instr. Methods 58, 124–143 (1968).Google Scholar
  97. 97.
    H. Baumann, K. Bethge, and E. Heinicke, Production of negative lithium ions in a Penning discharge, Nucl. Instr. Methods 46, 43–44 (1967).Google Scholar
  98. 98.
    W. H. Bennett and P. F. Darby, Negative atomic hydrogen ions, Phys. Rev. 49, 97–99 (1936).Google Scholar
  99. 99.
    W. L. Fite, Production of negative ions and noise in negative ion beams, Phys. Rev. 89 (2), 411–415 (1960).Google Scholar
  100. 100.
    J. J. Thompson, Further experiments on positive rays, Phil. Mag. 24 (140), 209–253 (1912).Google Scholar
  101. 101.
    O. Luhr, The mass of positive ions in a glow discharge, Phys. Rev. 38, 1730–1738 (1931).Google Scholar
  102. 102.
    J. B. Thompson, Electron energy distribution in plasmas IV. Oxygen and nitrogen, Proc. Roy. Soc. (London) A262, 503–518 (1961).Google Scholar
  103. 103.
    H. Dreeskamp, Über stickstoffionen im plasma, Z. Naturforsch. 12a, 876–881 (1957).Google Scholar
  104. 104.
    P. F. Knewstubb and A. W. Tickner, Mass spectrometry of ions in glow discharges. III. Nitrogen and its mixtures with hydrogen and oxygen, J. Chem. Phys. 37, 12, 2941–2949 (1962).Google Scholar
  105. 105.
    M Shahin, Use of corona discharges for the study of ion—molecule reactions. J. Chem Phys. 47 (11), 4392–4398 (1967).Google Scholar
  106. 106.
    H. H. Brömer and K. Fette, Mass-spectrometer evidence of N5, Phys. Letters 28A (2), 127–128 (1968).Google Scholar
  107. 107.
    L. G. McKnight, K. B. McAfee, and D. P. Sipler, Low field drift velocities and the reactions of nitrogen ions in nitrogen, Phys. Rev. 164 (1), 62–70 (1967).Google Scholar
  108. 108.
    O. Luhr, The nature of gas ions, Phys. Rev. 44, 459–462 (1933).Google Scholar
  109. 109.
    W. S. Whitlock and J. E. Bounden, Negative oxygen ions from a glow discharge, Proc. Phys. Soc. (London) 77, 845–852 (1961).Google Scholar
  110. 110.
    P. F. Knewstubb, P. H. Dawson, and A. W. Tickner, Mass spectrometry of ions in glow discharges. V. Oxygen, J. Chem. Phys. 38 (4), 1031–1032 (1963).Google Scholar
  111. 111.
    J. L. Spencer-Smith, Negative ions of iodine, Part I, Probe measurements, Phil. Mag. 19 (7), 806–823 (1935).Google Scholar
  112. 112.
    J. L. Spencer-Smith, Negative ions of iodine, Part II, Ion beams, Phil. Mag. 19 (7), 1016–1027 (1935).Google Scholar
  113. 113.
    R. Winstanley Lunt and A. H. Gregg, The occurrence of negative ions in the glow discharge through oxygen and other gases, Trans. Faraday Soc. 36, 1062–1073 (1940).Google Scholar
  114. 114.
    R. L. F. Boyd, A mass-spectrometer probe method for the study of gas discharges, Nature 165, 142–144 (1950).Google Scholar
  115. 115.
    A. K. Brewer and J. W. Westhaver, Chemical action in the glow discharge, IV. The synthesis of ozone, J. Phys. Chem. 34, 1280–1293 (1930).Google Scholar
  116. 116.
    H. E. Evans and P. P. Jennings, Mass-spectrometric study of the species present in rf discharges in CO2, CO, and O2, Trans. Faraday Soc. 61 (2), 2153–2160 (1965).Google Scholar
  117. 117.
    H. E. Evans and P. P. Jennings, A mass spectrometric study of the ionic species in a radiofrequency discharge of methane, J. Phys. Chem. 70, 1265–1267 (1966).Google Scholar
  118. 118.
    O. Eisenhut and R. Conrad, Beobachtungen über Zerfall und Bildung von Kohlenwasserstoffen in Entladungsröhren mit Hilfe von Kanalstrahlen, Z. Elektrochem. 36, 654–662 (1930).Google Scholar
  119. 119.
    R. Conrad, Decomposition of hexane, cyclohexane, and benzene in the positive ray tube, Trans. Faraday Soc. 30, 215–220 (1934).Google Scholar
  120. 120.
    H. E. Evans and P. P. Jennings, A mass spectrometric study of the neutrals and positive ionic species involved in carbon deposition from rf discharges in carbon-containing gases, Carbon 6, 695–705 (1968).Google Scholar
  121. 121.
    P. H. Dawson and A. W. Tickner, Positive ions in the carbon dioxide glow discharge, in “Compt. Rend. de la VIieme Conf. Int. sur les Phénomènes d’ionisation dans les Gaz,” Vol. II, pp. 79–81, Paris (1963).Google Scholar
  122. 122.
    M. M. Shahin, Mass spectrometric studies of corona discharges in air at atmospheric pressures, J. Chem. Phys. 45 (7), 2600–2605 (1966).Google Scholar
  123. 123.
    M. Pahl und U. Weimer, Ionenbildung in Edelgasentladungen mit Zusatz, in “Proc. of the 4th Int. Conf. on Ionization Phenomena in Gases,” (N. R. Nilsson, ed.), pp. 293–296, North-Holland Publishing Co., Amsterdam (1960).Google Scholar
  124. 124.
    M. M. Shahin, in “Ion—Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, R. F. Gould, ed.), Chapter 18, pp. 315–332, American Chemical Society, Washington, D.C. (1966).Google Scholar
  125. 125.
    J. L. Franklin, P. K. Ghosh, and S. A. Studniarz, in “Chemical Reactions in Electric Discharges” (Advances in Chemistry Series, No. 80, B. D. Blaustein, ed.), Chapter 5, pp. 59–82, American Chemical Society, Washington, D.C. (1969).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Stanley A. Studniarz
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations