Advertisement

Ionizing Collision Reactions of Electronically Excited Atoms and Molecules

  • F. W. Lampe

Abstract

Ionization reactions that result from thermal collisions of electronically excited atoms or molecules are often termed chemiionization reactions. There is, however, no general agreement on a definition of the limits of the term chemiionization in the sense that we can say this or that reaction is or is not a chemiionization process. Thus Berry,(1) in a recent review, includes in the term “all the processes that result in the formation of free charges, electrons or ions, under the conditions of chemical reactions.” This rather broad definition includes all the ionization processes possible in collisions involving electronically excited species and, in addition, includes autoionization and very high-temperature collisions of species in their ground electronic states. Fontijn,(2) on the other hand, defines chemiionization as “a process by which the number of elementary charge carriers is increased as a direct result of the formation of new chemical bonds.” This more limited definition excludes a number of ionization possibilities in thermal collisions involving electronically excited entities, as well as autoionization processes; it would include high-temperature ionizing collisions of species in ground electronic states.

Keywords

Ionization Potential Metastable State Excitation Function Potential Energy Curve Radiative Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Berry, Lectures, Proc. Mt. School Phys. “Enrico Fermi,” 44, 193 (1970), Academic Press, New York.Google Scholar
  2. 2.
    A. Fontijn, in “Progress in Reaction Kinetics” (G. Porter, ed.), Vol. 6, Pergamon Press, New York (1971).Google Scholar
  3. 3.
    R. C. Williamson, Phys. Rev. 21, 107 (1923).Google Scholar
  4. 4.
    R. Samuel, Z. Physik. 29, 209 (1924).Google Scholar
  5. 5.
    J. Kunz and E. H. Williams, Phys. Rev. 22, 456 (1923).Google Scholar
  6. 6.
    K. H. Kingdon, Phys. Rev. 21, 408 (1923).Google Scholar
  7. 7.
    G. Hertz, Z. Physik 18, 307 (1923).Google Scholar
  8. 8.
    P. D. Foote and F. L. Mohler, Phys. Rev. 26, 195 (1925).Google Scholar
  9. 9.
    F. L. Mohler, P. D. Foote, and R. L. Chenault, Phys. Rev. 27, 37 (1926).Google Scholar
  10. 10.
    E. O. Lawrence and N. E. Edlefsen, Phys. Rev. 34, 233 (1929).Google Scholar
  11. 11.
    J. Franck and P. Jordan, “Anregung von Quantensprüngen durch Stösse,” p. 125, Julius Springer, Berlin (1926).Google Scholar
  12. 12.
    B. Gudden, “Lichtelektrische Erscheinungen,” p. 226, Julius Springer, Berlin (1928).Google Scholar
  13. 13.
    F. L. Mohler and C. Boeckner, J. Res. Natl. Bur. Std. 5, 51 (1930).Google Scholar
  14. 14.
    F. L. Mohler and C. Boeckner, J. Res. Natl. Bur. Std. 5, 339 (1930).Google Scholar
  15. 15.
    C. Boeckner and F. L. Mohler, J. Res. Natl. Bur. Std. 5, 831 (1930).Google Scholar
  16. 16.
    K. Freudenberg, Z. Physik 67, 417 (1931).Google Scholar
  17. 17.
    F. L. Arnot and J. C. Milligan, Nature 135, 999 (1935).Google Scholar
  18. 18.
    F. L. Arnot and J. C. Milligan, Proc. Roy. Soc. (London) A153, 359 (1936).Google Scholar
  19. 19.
    F. L. Arnot and M. B. M’Ewen, Proc. Roy. Soc. (London) A165, 133 (1938).Google Scholar
  20. 20.
    B. L. Snavely, Phys. Rev. 52, 174 (1937).Google Scholar
  21. 21.
    O. Tüxen, Z. Physik 103, 463 (1936).Google Scholar
  22. 22.
    F. L. Arnot and M. B. M’Ewen, Proc. Roy. Soc. (London) A166, 543 (1938).Google Scholar
  23. 23.
    F. L. Arnot and M. B. M’Ewen, Proc. Roy. Soc. (London) A171, 106 (1939).Google Scholar
  24. 24.
    R. Meyerott, Phys. Rev. 70, 671 (1946).Google Scholar
  25. 25.
    Ref. 11, p. 119.Google Scholar
  26. 26.
    J. Franck and P. Knipping, Z. Physik 1, 320 (1920).Google Scholar
  27. 27.
    F. M. Penning, Naturwiss. 15, 818 (1927).Google Scholar
  28. 28.
    F. M. Penning, Z. Physik 46, 335 (1928).Google Scholar
  29. 29.
    F. M. Penning, Z. Physik 72, 338 (1931).Google Scholar
  30. 30.
    F. M. Penning, Z. Physik 57, 723 (1929).Google Scholar
  31. 31.
    F. M. Penning, Physica 1, 1028 (1934).Google Scholar
  32. 32.
    F. M. Penning and C. C. J. Addink, Physica 1, 1007 (1934).Google Scholar
  33. 33.
    A. A. Kruithof and F. M. Penning, Physica 4, 430 (1937).Google Scholar
  34. 34.
    A. A. Kruithof and M. J. Druyvesteyn, Physica 4, 450 (1937).Google Scholar
  35. 35.
    A. Hoffman, Z. Physik 119, 223 (1942).Google Scholar
  36. 36.
    Th. G. Schut and J. A. Smit, Physica 10, 440 (1943).Google Scholar
  37. 37.
    W. Steubing, Physik Z. 10, 787 (1909).Google Scholar
  38. 38.
    G. F. Rouse and G. W. Giddings, Proc. Natl. Acad. Sci. 11, 514 (1925).Google Scholar
  39. 39.
    G. W. Giddings and G. F. Rouse, Proc. Natl. Acad. Sci. 12, 447 (1926).Google Scholar
  40. 40.
    P. D. Foote, Phys. Rev. 29, 609 (1927).Google Scholar
  41. 41.
    F. G. Houtermans, Z. Physik 41, 619 (1927).Google Scholar
  42. 42.
    R. Schade, Z. Physik 105, 595 (1937).Google Scholar
  43. 43.
    R. Schade, Z. Physik 108, 353 (1938).Google Scholar
  44. 44.
    H. Büttner, Z. Physik 111, 750 (1939).Google Scholar
  45. 45.
    J. A. Hornbeck, Phys. Rev. 84, 615 (1951).Google Scholar
  46. 46.
    J. A. Hornbeck and J. P. Molnar, Phys. Rev. 84, 621 (1951).Google Scholar
  47. 47.
    W. Kaul and R. Tauben, Z. Naturforsch. 17a, 88 (1962).Google Scholar
  48. 48.
    F. J. Comes, Z. Naturforsch. 17a, 1031 (1962).Google Scholar
  49. 49.
    J. S. Dahier, J. L. Franklin, M. S. B. Munson, and F. H. Field, J. Chem. Phys. 36, 3332 (1962).Google Scholar
  50. 50.
    M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys. Chem. 67, 1542 (1963).Google Scholar
  51. 51.
    R. K. Curran, J. Chem. Phys. 38, 2974 (1963).Google Scholar
  52. 52.
    M. Saporoschenko, Phys. Rev. 111, 1550 (1958).Google Scholar
  53. 53.
    R. Fuchs and W. Kaul, Z. Naturforsch. 15a, 108 (1960).Google Scholar
  54. 54.
    W. Kaul and R. Fuchs, Z. Naturforsch. 15a, 326 (1960).Google Scholar
  55. 55.
    M. S. B. Munson, F. H. Field, and J. L. Franklin, J. Chem. Phys. 37, 1790 (1962).Google Scholar
  56. 56.
    F. H. Field, H. N. Head, and J. L. Franklin, J. Am. Chem. Soc. 84, 1118 (1962).Google Scholar
  57. 57.
    F. J. Comes, in “Proc. of the VI International Conf. on Ionization Phenomena in Gases,” Paris 1963, Vol. 1, p. 159.Google Scholar
  58. 58.
    F. J. Comes, Z. Naturforsch. 18a, 539 (1963).Google Scholar
  59. 59.
    F. H. Field and J. L. Franklin, J. Am. Chem. Soc. 83, 4509 (1961).Google Scholar
  60. 60.
    R. K. Asundi, G. J. Schulz, and P. J. Chantry, J. Chem. Phys. 47, 1584 (1967).Google Scholar
  61. 61.
    G. Junk and H. J. Svec, J. Am. Chem. Soc. 80, 2908 (1958).Google Scholar
  62. 62.
    C. E. Melton and W. H. Hamill, J. Chem. Phys. 41, 1469 (1964).Google Scholar
  63. 63.
    D. Morris, Proc. Phys. Soc. 68A, 11 (1955).Google Scholar
  64. 64.
    M. Pahl and V. Weimer, Z. Naturforsch. 13a, 753 (1958).Google Scholar
  65. 65.
    M. Pahl, Z. Naturforsch. 14a, 239 (1959).Google Scholar
  66. 66.
    M. Pahl, Z. Naturforsch. 18a, 1276 (1963).Google Scholar
  67. 67.
    P. F. Knewstubb and A. W. Tickner, J. Chem. Phys. 36, 674 (1962).Google Scholar
  68. 68.
    H. Held, J. L. Gilkinson, and L. M. Chanin, J. Appl. Phys. 40, 4395 (1969).Google Scholar
  69. 69.
    F. C. Kohout, Private communication (1969).Google Scholar
  70. 70.
    J. P. Gaus and L. M. Chanin, J. Appl. Phys. 40, 256 (1969).Google Scholar
  71. 71.
    J. L. Gilkinson, H. Held, and L. M. Chanin, J. Appl. Phys. 40, 2350 (1969).Google Scholar
  72. 72.
    V. Cermak and Z. Herman, Coll. Czech. Chem. Commun. 29, 953 (1964).Google Scholar
  73. 73.
    H. Hotop and A. Niehaus, J. Chem. Phys. 47, 2506 (1967).Google Scholar
  74. 74.
    H. Hotop, Diplom-Thesis, Albert-Ludwigs Universität, Freiburg, Germany, December 1967.Google Scholar
  75. 75.
    E. E. Muschlitz, Jr., Science 159, 599 (1968).Google Scholar
  76. 76.
    S. Fluegge (Ed.), “Handbuch der Physik,” Bd XXXV, Atome 1, p. 355, Springer-Verlag, Berlin (1957).Google Scholar
  77. 77.
    A. H. Gabriel and D. W. O. Heddle, Proc. Roy. Soc. (London) A258, 124 (1960).Google Scholar
  78. 78.
    Z. Herman and V. Cermâk, in “5th International Conf. on Atomic and Electronic Collisions, Leningrad 1967,” p. 602.Google Scholar
  79. 79.
    R. E. Huffman and D. H. Katayama, J. Chem. Phys. 45, 138 (1966).Google Scholar
  80. 80.
    J. A. R. Samson and R. B. Cairns, J. Opt. Soc. Am. 56, 1140 (1966).Google Scholar
  81. 81.
    R. D. Hudson, J. Chem. Phys. 43, 1790 (1965).Google Scholar
  82. 82.
    Y.-T. Lee and B. H. Mahan, J. Chem. Phys. 42, 2893 (1965).Google Scholar
  83. 83.
    R. A. Williams, J. Chem. Phys. 47, 4281 (1967).Google Scholar
  84. 84.
    W. Kaul, in “Proc. of the 6th International Conf. on Ionization Phenomena in Gases, Paris 1963,” Vol. 1, p. 169.Google Scholar
  85. 85.
    W. Kaul, P. Seyfried, and R. Taubert, Z. Naturforsch. 18a, 432, 884 (1963).Google Scholar
  86. 86.
    J. H. Lees, Proc. Roy. Soc. (London) A137, 173 (1932).Google Scholar
  87. 87.
    O. Thieme, Z. Physik 78, 412 (1932).Google Scholar
  88. 88.
    R. M. St. John, F. L. Miller, and C. C. Lin, Phys. Rev. 134, A888 (1964).Google Scholar
  89. 89.
    P. M. Becker and F. W. Lampe, J. Am. Chem. Soc. 86, 5347 (1964).Google Scholar
  90. 90.
    P. M. Becker and F. W. Lampe, J. Chem. Phys. 42, 3857 (1965).Google Scholar
  91. 91.
    J. J. DeCorpo and F. W. Lampe, J. Chem. Phys. 51, 943 (1969).Google Scholar
  92. 92.
    G. G. Hess and F. W. Lampe, J. Am. Chem. Soc. 86, 2952 (1964).Google Scholar
  93. 93.
    M. P. Teter, F. E. Niles, and W. W. Robertson, J. Chem. Phys. 44, 3018 (1966).Google Scholar
  94. 94.
    J. J. DeCorpo, Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania, June 1969.Google Scholar
  95. 95.
    W. W. Robertson and A. Fontijn, Private communication, October 1968. See Ref. 2.Google Scholar
  96. 96.
    J. L. Franklin, et al., NSRDS-NBS26, U. S. Dept. of Commerce, Washington, D. C., June 1969..Google Scholar
  97. 97.
    R. F. Bacher and S. Goudsmit, “Atomic Energy States,” McGraw-Hill Book Co., New York (1932).Google Scholar
  98. 98.
    M. Pahl and V. Weimer, Z. Naturforsch. 12a, 926 (1957).Google Scholar
  99. 99.
    Z. Herman and V. Cermâk, Coll. Czech. Chem. Commun. 31, 649 (1966).Google Scholar
  100. 100.
    Z. Herman and V. Cermâk, Nature 199, 588 (1963).Google Scholar
  101. 101.
    P. M. Becker and J. S. Dahler, Phys. Rev. 136A, 73 (1964).Google Scholar
  102. 102.
    G. Herzberg, “Atomic Spectra and Atomic Structure,” Dover Publications, New York (1944).Google Scholar
  103. 103.
    W. P. Sholette and E. E. Muschlitz, J. Chem. Phys. 36, 3368 (1962).Google Scholar
  104. 104.
    E. E. Benton, E. E. Ferguson, F. A. Matsen, and W. W. Robertson, Phys. Rev. 128, 206 (1962).Google Scholar
  105. 105.
    C. R. Jones and W. W. Robertson, J. Chem. Phys. 49, 4240 (1968).Google Scholar
  106. 106.
    J. A. Herce, K. D. Forster, and E. E. Muschlitz, Bull. Am. Phys. Soc. 13, 206 (1968).Google Scholar
  107. 107.
    H. Hotop, A. Niehaus, and A. L. Schmeltekopf, Z. Physik 229, 1 (1969).Google Scholar
  108. 108.
    R. B. Cohen and F. W. Lampe, Final Technical Report, Office of Aerospace Research Contract No. AF33(615)-1307, 1967.Google Scholar
  109. 109.
    Z. Herman and V. Cermâk, Coll. Czech. Chem. Commun. 28, 799 (1963).Google Scholar
  110. 110.
    W. A. Chupka and M. E. Russell, J. Chem. Phys. 49, 5426 (1968).Google Scholar
  111. 111.
    W. A. Chupka, M. E. Russell, and K. Rafaey, J. Chem. Phys. 48, 1518 (1968).Google Scholar
  112. 112.
    H. Hotop and A. Niehaus, Z. Physik 215, 395 (1968).Google Scholar
  113. 113.
    S. E. Kupriyanov, Soviet Phys.-JETP 21, 311 (1965).Google Scholar
  114. 114.
    Z. Herman and V. Cermâk, Coll. Czech. Chem. Commun. 33, 468 (1968).Google Scholar
  115. 115.
    V. Cermâk, J. Chem. Phys. 44, 1318 (1966).Google Scholar
  116. 116.
    V. Cermâk, J. Chem. Phys. 43, 4527 (1965).Google Scholar
  117. 117.
    A. Henglein and G. A. Muccini, Z. Naturforsch. 15a, 584 (1960).Google Scholar
  118. 118.
    H. Hotop, F. W. Lampe, and A. Niehaus, J. Chem. Phys. 51, 593 (1969).Google Scholar
  119. 119.
    I. Koyano, I. Tanaka, and I. Omura, J. Chem. Phys. 40, 2734 (1964).Google Scholar
  120. 120.
    S. E. Kupriyanov, Soviet Phys.JETP 24, 674 (1967).Google Scholar
  121. 121.
    V. Cermâk and Z. Herman, Chem. Phys. Letters 2, 359 (1968).Google Scholar
  122. 122.
    H. Hotop and A. Niehaus, Z. Physik 228, 68 (1969).Google Scholar
  123. 123.
    V. Fuchs and A. Niehaus, Phys. Rev. Letters 21, 1136 (1968).Google Scholar
  124. 124.
    L. J. Stief, V. J. DeCarlo, and R. J. Mataloni, J. Chem. Phys. 42, 3113 (1965).Google Scholar
  125. 125.
    M. S. B. Munson, J. Phys. Chem. 69, 572 (1965).Google Scholar
  126. 126.
    D. A. MacLennan, Phys. Rev. 148A, 218 (1966).Google Scholar
  127. 127.
    A. V. Phelps and J. P. Molnar, Phys. Rev. 89, 1202 (1953).Google Scholar
  128. 128.
    M. A. Biondi, Phys. Rev. 88, 660 (1952).Google Scholar
  129. 129.
    V. Cermâk, Coll. Czech. Chem. Commun. 33, 2739 (1968).Google Scholar
  130. 130.
    V. Cermâk and Z. Herman, Coll. Czech. Chem. Commun. 30, 169 (1965).Google Scholar
  131. 131.
    J. A. Herce, J. R. Penton, R. J. Cross, and E. E. Muschlitz, J. Chem. Phys. 49, 958 (1968).Google Scholar
  132. 132.
    E. E. Muschlitz and M. J. Weiss, In “Atomic Collision Processes” ( M. R. C. CcDowell, ed.), p. 1073, North-Holland Publishing Co., Amsterdam (1964).Google Scholar
  133. 133.
    H. Hotop and A. Niehaus, Chem. Phys. Letters 3, 687 (1969).Google Scholar
  134. 134.
    A. V. Phelps and J. P. Molnar, Phys. Rev. 89, 1202 (1953).Google Scholar
  135. 135.
    H. Hotop and A. Niehaus, J. Chem. Phys. 47, 2506 (1967).Google Scholar
  136. 136.
    M. A. Biondi, Phys. Rev. 82, 453 (1951).Google Scholar
  137. 137.
    O. Von Roos, J. Chem. Phys. 30, 729 (1959).Google Scholar
  138. 138.
    R. E. Lund and H. J. Oskam, Z. Physik 219, 131 (1969).Google Scholar
  139. 139.
    C. R. Gatz, F. T. Smith, and G. Wise, J. Chem. Phys. 40, 3743 (1964).Google Scholar
  140. 140.
    C. R. Gatz, R. A. Young, and R. L. Sharpless, J. Chem. Phys. 39, 1234 (1963).Google Scholar
  141. 141.
    R. A. Young and G. St. John, J. Chem. Phys. 45, 4156 (1966).Google Scholar
  142. 142.
    J. A. Berberet and K. C. Clark, Phys. Rev. 100, 506 (1955).Google Scholar
  143. 143.
    D. R. Bates, Proc. Roy. Irish Acad. 51, 151 (1947).Google Scholar
  144. 144.
    G. Glockler and S. C. Lind, “The Electrochemistry of Gases and Other Dielectrics,” pp. 333–335, John Wiley and Sons, New York (1939).Google Scholar
  145. 145.
    J. H. Simons and R. P. Seward, J. Chem. Phys. 6, 790 (1938).Google Scholar
  146. 146.
    R. S. Mulliken, Phys. Rev. 136A, 962 (1964).Google Scholar
  147. 147.
    S. E. Nielsen and J. S. Dahler, J. Chem. Phys. 45, 4060.Google Scholar
  148. 148.
    S. E. Nielsen and R. S. Berry, Chem. Phys. Letters 2, 503 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • F. W. Lampe
    • 1
  1. 1.Whitmore LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations