Advertisement

Beam Studies of Ion-Molecule Reactions

  • Zdenek Herman
  • Richard Wolfgang

Abstract

Since the beginning of systematic studies of chemical reactions of gaseous ions, large amounts of data have been assembled by classical mass spectrometric methods. This information relates largely to what reactions and reaction sequences occur and the probabilities, or cross sections, of such processes. Beam studies of ion-molecule reactions can also provide such data; however, their great advantage is that they can determine not only the nature of products, but also their velocities and angular distributions. This makes possible a much more detailed and definitive insight into the mechanisms involved.

Keywords

Angular Distribution Collision Energy Direct Mechanism Wien Filter Velocity Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Herschbach, Advan. Chem. Phys. 10, 332 (1966).Google Scholar
  2. 2.
    A. Henglein, K. Lacmann, and G. Jacobs, Ber. Bunsenges. Phys. Chem. 69, 279 (1965).Google Scholar
  3. 3.
    A. Ding, K. Lacmann, and A. Henglein, Ber. Bunsenges. Phys. Chem. 71, 596 (1967).Google Scholar
  4. 4.
    A. Ding, A. Henglein, and K. Lacmann, Z. Naturforsch. 23a, 779 (1968).Google Scholar
  5. 5.
    A. Ding, A. Henglein, D. Hyatt, and K. Lacmann, Z. Naturforsch. 23a, 2084 (1968).Google Scholar
  6. 6.
    R. D. Fink and J. S. King, Jr., J. Chem. Phys. 47, 1857 (1967).CrossRefGoogle Scholar
  7. 7.
    R. L. Champion, L. D. Doverspike, and T. L. Bailey, J. Chem. Phys. 45, 4377 (1966).CrossRefGoogle Scholar
  8. 8.
    W. R. Gentry, E. A. Gislason, Yuah-Tseh Lee, B. H. Mahan, and Chi-Wing Tsao, Disc. Faraday Soc. 44, 137 (1967).CrossRefGoogle Scholar
  9. 9.
    W. R. Gentry, E. A. Gislason, B. H. Mahan, and Chi-Wing Tsao, J. Chem. Phys. 49, 3058 (1968).CrossRefGoogle Scholar
  10. 10.
    B. Mahan, Acc. Chem. Res. 1, 217 (1968).CrossRefGoogle Scholar
  11. 11.
    L. D. Doverspike, R. L. Champion, and T. L. Bailey, J. Chem. Phys. 45, 4385 (1966).CrossRefGoogle Scholar
  12. 12.
    B. R. Turner, M. A. Fineman, and R. F. Stebbings, J. Chem. Phys. 42, 4088 (1965).CrossRefGoogle Scholar
  13. 13.
    Z. Herman, J. D. Kerstetter, T. L. Rose, and R. Wolfgang, Rev. Sci. Instr. 40, 538 (1969)CrossRefGoogle Scholar
  14. 14.
    R. Wolfgang, Acc. Chem. Res. 2, 248 (1969).CrossRefGoogle Scholar
  15. 15.
    E. Gustafsson and E. Lindholm, Ark. Fys. 18, 219 (1960).Google Scholar
  16. 16.
    D. R. Bates (Ed.), “Atomic and Molecular Processes,” p. 705, Academic Press, London (1962).Google Scholar
  17. 17.
    P. K. Rol and E. A. Entemann, J. Chem. Phys. 49, 1430 (1968).CrossRefGoogle Scholar
  18. 18.
    P. K. Rol and E. A. Entemann, Air Force Cambridge Research Laboratories Final Report, AFCLR-69–0022.Google Scholar
  19. 19.
    J. Durup and M. Durup, J. Chem. Phys. 64, 386 (1967).Google Scholar
  20. 20.
    M. Durup and J. Durup, in “Advances in Mass Spectrometry,” Vol. 4, p. 677, Institute of Petroleum (1968).Google Scholar
  21. 21.
    L. Malus, I. Opauszky, D. Hyatt, A. J. Mason, K. Birkinshaw, and M. J. Henchman, Disc. Faraday Soc. 44, 146 (1967).CrossRefGoogle Scholar
  22. 22.
    M. Henchman, private communication.Google Scholar
  23. 23.
    A. L. Schmeltekopf, F. C. Fehsenfeld, G. I. Gilman, and E. E. Ferguson, Planetary Space Sci. 15, 401 (1967).CrossRefGoogle Scholar
  24. 24.
    J. C. Tully, Z. Herman, and R. Wolfgang, J. Chem. Phys. 54, 1730 (1971).CrossRefGoogle Scholar
  25. 25.
    T. L. Rose, Thesis, Yale University 1967.Google Scholar
  26. 26.
    J. B. Anderson, R. P. Andres, and J. B. Fenn, Advan. Chem. Phys., 10, 275 (1966).CrossRefGoogle Scholar
  27. 27.
    E. A. Gislason, B. H. Mahan, Chi-Wing Tsao, and A. S. Werner, J. Chem. Phys. 50, 142 (1969).CrossRefGoogle Scholar
  28. 28.
    P. M. Hierl, Z. Herman, and R. Wolfgang, J. Chem. Phys. 53, 660 (1970).CrossRefGoogle Scholar
  29. 29.
    R. Wolfgang and R. J. Cross, Jr., J. Phys. Chem. 73, 743 (1969).CrossRefGoogle Scholar
  30. 30.
    J. Tully, private communication.Google Scholar
  31. 31.
    W. B. Miller, S. A. Safron, and D. R. Herschbach, Disc. Faraday Soc. 44, 108 (1967).CrossRefGoogle Scholar
  32. 32.
    R. Wolfgang, Acc. Chem. Res. 3, 48 (1970).CrossRefGoogle Scholar
  33. 33.
    P. Langevin, Ann. Chim. Phys. 5, 245 (1905).Google Scholar
  34. 34.
    G. Gioumousis and O. P. Stevenson, J. Chem. Phys. 29, 294 (1958).CrossRefGoogle Scholar
  35. 35.
    K. Lacmann and A. Henglein, Ber. Bunsenges. Phys. Chem. 69, 286 (1965).Google Scholar
  36. 36.
    K. Lacmann and A. Henglein, Ber. Bunsenges. Phys. Chem. 69, 292 (1965).Google Scholar
  37. 37.
    K. Lacmann, A. Henglein, and B. Knoll, J. Chem. Phys. 43, 1048 (1965).CrossRefGoogle Scholar
  38. 38.
    A. Henglein, in “Ion-Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 63, American Chemical Society, Washington, D.C. (1966).CrossRefGoogle Scholar
  39. 39.
    V. Termâk and Z. Herman, Nucleonics 19, 106 (1961).Google Scholar
  40. 40.
    F. S. Klein and L. Friedman, J. Chem. Phys. 41, 1789 (1964).CrossRefGoogle Scholar
  41. 41.
    Z. Herman, J. Kerstetter, T. L. Rose, and R. Wolfgang, Disc. Faraday Soc. 44, 123 (1967).CrossRefGoogle Scholar
  42. 42.
    P. Hierl, Z. Herman, J. Kerstetter, and R. Wolfgang, J. Chem. Phys. 48, 4319 (1968).CrossRefGoogle Scholar
  43. 43.
    Z. Herman, J. Kerstetter, T. Rose, and R. Wolfgang, J. Chem. Phys. 46, 2844 (1967).CrossRefGoogle Scholar
  44. 44.
    J. Kerstetter, Thesis, Yale University (1969);Google Scholar
  45. J. Kerstetter, and R. Wolfgang, J. Chem. Phys. 53, 3765 (1970).CrossRefGoogle Scholar
  46. 45.
    R. Suplinskas, J. Chem. Phys. 49, 5046 (1968).CrossRefGoogle Scholar
  47. 46.
    T. George and R. Suplinskas, J. Chem. Phys. 51, 3666 (1969).CrossRefGoogle Scholar
  48. 47.
    T. George and R. Suplinskas, J. Chem. Phys. 54, 1037 (1971).CrossRefGoogle Scholar
  49. 48.
    M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, J. Chem. Phys. 52, 2698 (1970).CrossRefGoogle Scholar
  50. a. D. T. Chang and J. C. Light, J. Chem. Phys. (in press).Google Scholar
  51. 49b.
    J. C. Light and S. Chan, J. Chem. Phys. 51, 1008 (1969).CrossRefGoogle Scholar
  52. 50.
    P. Kuntz, Chem. Phys. Letters 4, 129 (1969).CrossRefGoogle Scholar
  53. 51.
    J. L. Franklin and M. A. Haney, J. Phys. Chem. 73, 2857 (1969).CrossRefGoogle Scholar
  54. 52.
    P. Kuntz and J. C. Polanyi, Disc. Faraday Soc. 44, 180 (1967).Google Scholar
  55. 53.
    Z. Herman, P. Hierl, A. Lee, and R. Wolfgang, J. Chem. Phys. 51, 454 (1969).CrossRefGoogle Scholar
  56. 54.
    A. Ding, A. Henglein, and K. Lacmann, Z. Naturforsch. 23a, 780 (1968).Google Scholar
  57. 55.
    L. Matus, D. J. Hyatt, and M. J. Henchman, J. Chem. Phys. 46, 2439 (1967).CrossRefGoogle Scholar
  58. 56.
    R. F. Pottie, and W. H. Hamill, J. Phys. Chem. 63, 877 (1959);CrossRefGoogle Scholar
  59. A. Henglein, Z. Naturforsch. 17a, 44 (1962);Google Scholar
  60. A. Henglein, Z. Naturforsch. 18a, 98 (1963).Google Scholar
  61. 57.
    A. Ding, A. Henglein, D. Hyatt, and K. Lacmann, Z. Naturforsch. 23a, 2090 (1969).Google Scholar
  62. 58.
    A. Ding and A. Henglein, Ber. Bunsenges. Phys. Chem. 73, 562 (1969)Google Scholar
  63. 59.
    Z. Herman, A. Lee, and R. Wolfgang, J. Chem. Phys. 51, 452 (1969).CrossRefGoogle Scholar
  64. 60.
    A. Lee, Z. Herman, and R. Wolfgang, to be published.Google Scholar
  65. 61.
    E. A. Gislason, B. H. Mahan, Chi-Wing Tsao, and A. S. Werner, J. Chem. Phys. 50, 5418 (1969).CrossRefGoogle Scholar
  66. 62.
    F. A. Abramson and J. H. Futrell, J. Chem. Phys. 45, 1925 (1966).CrossRefGoogle Scholar
  67. 63.
    H. S. Johnston, “Gas Phase Reaction Rate Theory,” Ronald Press, New York (1966).Google Scholar
  68. 64.
    R. A. Marcus, J. Chem. Phys. 21, 359 (1952).CrossRefGoogle Scholar
  69. 65.
    L. S. Kassel, “Kinetics of Homogenous Gas Reactions,” The Chemical Catalog Co., New York (1932).Google Scholar
  70. 66.
    A. Ding, Z. Naturforsch. 24a, 856 (1969).Google Scholar
  71. 67.
    L. D. Doverspike and R. C. Champion, J. Chem. Phys. 46, 4718 (1967).CrossRefGoogle Scholar
  72. 69.
    W. R. Gentry, E. A. Gislason, B. H. Mahan, and Chi-Wing Tsao, J. Chem. Phys. 47, 1856 (1967).CrossRefGoogle Scholar
  73. 70.
    R. L. Champion and L. D. Doverspike, J. Chem. Phys. 49, 4321 (1968).CrossRefGoogle Scholar
  74. 71.
    D. W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966).CrossRefGoogle Scholar
  75. 72.
    D. Hyatt and K. Lacmann, Z. Naturforsch. 23a, 2080 (1968).Google Scholar
  76. 73.
    J. Krenos and R. Wolfgang, J. Chem. Phys., 52, 5961 (1970).CrossRefGoogle Scholar
  77. 74.
    I. G. Csizmadia, J. C. Polanyi, A. C. Roach, and W. H. Wong, Can. J. Chem. 47, 4097 (1969).CrossRefGoogle Scholar
  78. 75.
    J. Krenos, R. Preston, R. Wolfgang, and J. Tully, Chem. Phys. Letters 10, 17 (1971).CrossRefGoogle Scholar
  79. 76.
    J. Krenos, Thesis, Yale University (1972).Google Scholar
  80. 77.
    M. G. Holliday, J. T. Muckerman, and L. Friedman, J. Chem. Phys. 54, 1058 (1971).CrossRefGoogle Scholar
  81. 78.
    W. B. Maier, II, J. Chem. Phys. 54, 2732 (1971).CrossRefGoogle Scholar
  82. 79.
    R. K. Preston and J. C. Tully, J. Chem. Phys. 54, 4297 (1971).CrossRefGoogle Scholar
  83. 80.
    J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).CrossRefGoogle Scholar
  84. 81.
    M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, J. Chem. Phys. 52, 2698 (1970).CrossRefGoogle Scholar
  85. 82.
    E. A. Gislason, B. H. Mahan, C. W. Tsao, and A. S. Werner, J. Chem. Phys. 54, 3897 (1971).CrossRefGoogle Scholar
  86. 83.
    W. Felder, N. Sbar, and J. Dubrin, Chem. Phys. Letters 6, 385 (1970).CrossRefGoogle Scholar
  87. 84.
    J. J. Leventhal, J. Chem. Phys. 54, 3279 (1971).CrossRefGoogle Scholar
  88. 85.
    J. J. Leventhal, J. Chem. Phys. 54, 5102 (1971).CrossRefGoogle Scholar
  89. 86.
    J. J. Leventhal, J. Chem. Phys. 54, 4654 (1971).CrossRefGoogle Scholar
  90. 87.
    G. Bosse, A. Ding, and A. Henglein, Z. Naturforsch. 26a, 932 (1971).Google Scholar
  91. 88.
    G. Bosse, A. Ding, and A. Henglein, Ber. Bunsenges. Phys. Chem. 75, 413 (1971).Google Scholar
  92. 89.
    M. H. Chiang, B. H. Mahan, C. W. Tsao, and A. S. Werner, J. Chem. Phys. 53, 3752 (1970).CrossRefGoogle Scholar
  93. 90.
    A. Lee, R. L. LeRoy, Z. Herman, R. Wolfgang, and J. C. Tully, Chem. Phys. Letters (in press).Google Scholar
  94. 91.
    W. D. Held, J. Schöttler, and J. P. Toennies, Chem. Phys. Letters 6, 304 (1970).CrossRefGoogle Scholar
  95. 92.
    H. Udseth, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 54, 3642 (1971).CrossRefGoogle Scholar
  96. 93.
    T. F. Moran, F. Petty, and G. S. Turner, Chem. Phys. Letters 9, 379 (1971).CrossRefGoogle Scholar
  97. 94.
    F. A. Herrero, E. M. Nemeth, and T. L. Bailey, J. Chem. Phys. 50, 4591 (1969).CrossRefGoogle Scholar
  98. 95.
    H-P. Weise, H. U. Mittmann, A. Ding, and A. Henglein, Z. Naturforsch. 25a, 1154 (1970).Google Scholar
  99. 96.
    R. L. Champion, L. D. Doverspike, W. G. Rich, and S. M. Bobbio, Phys. Rev. A2, 2328 (1970).Google Scholar
  100. 97.
    H. U. Mittmann, H.-P. Weise, A. Ding, and A. Henglein, Z. Naturforsch. 26a, 1112 (1971);Google Scholar
  101. H. U. Mittmann, H.-P. Weise, A. Ding, and A. Henglein, Z. Naturforsch. 26a, 1122 (1971).Google Scholar
  102. 98.
    H. U. Mittmann, H.-P. Weise, A. Ding, and A. Henglein, Z. Naturforsch. 26a, 1282 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Zdenek Herman
    • 1
  • Richard Wolfgang
    • 1
  1. 1.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations