Advertisement

Tandem Mass Spectrometric Studies of Ion-Molecule Reactions

  • Jean H. Futrell
  • Thomas O. Tiernan

Abstract

The use of tandem mass spectrometers as an experimental tool and the type of information derived from such studies are closely related to the crossed-beam studies of these reactions discussed by Herman and Wolfgang in Chapter 12, to the charge-exchange studies Lindholm discussed in Chapter 10, and to the ion cyclotron resonance technique described by Henis in Chapter 9. The relationship of these techniques is illustrated by Fig. 1, which shows a highly sophisticated, idealized apparatus suitable for studying all these problems. All four approaches have the characteristic that, with appropriate care, one can isolate a particular elementary reaction and study it without interference from the many complex, interacting parameters present in a system which does not involve some method of species selection.

Keywords

Kcal Mole Dissociative Electron Capture Translational Energy Collision Chamber Internal Energy State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Lindholm, Z. Naturforsch 9a, 535 (1954).Google Scholar
  2. 2.
    J. H. Futrell and C. D. Miller, Rev. Sci. Instr. 37, 1521 (1966).CrossRefGoogle Scholar
  3. 3.
    C. F. Giese and W. B. Maier II, J. Chem. Phys. 39, 739 (1963).CrossRefGoogle Scholar
  4. 4.
    J. B. Homer, R. S. Lehrte, R. C. Robb, M. Takahashi and D. W. Thomas, in “Advances in Mass Spectrometry,” (R. M. Elliot, ed.), Vol. II, Pergamon Press, New York, 1963, p. 503.Google Scholar
  5. 5.
    G. K. Lavrovskaya, M. 1. Markin, and V. L. Tal’rose, Kinetika i Kataliz 2 (1), 21 (1961).Google Scholar
  6. 6.
    B. R. Turner, M. A. Fineman, and R. F. Stebbings, J. Chem. Phys. 42, 4088 (1965).CrossRefGoogle Scholar
  7. 7.
    D. W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966).CrossRefGoogle Scholar
  8. 8.
    E. R. Weiner, G. R. Hertel, and W. S. Koski, J. Am. Chem. Soc. 86, 788 (1964).CrossRefGoogle Scholar
  9. 9.
    J. C. Abbe and J. P. Adloff, Compt. Rend. 258, 3003 (1964).Google Scholar
  10. 10.
    C. F. Giese and W. B. Maier II, J. Chem. Phys. 35, 1913 (1961).CrossRefGoogle Scholar
  11. 11.
    W. B. Maier II, J. Chem. Phys. 42, 1790 (1965).CrossRefGoogle Scholar
  12. 12.
    D. F. Munro, Ph.D. Thesis, Johns Hopkins University, 1969.Google Scholar
  13. 13.
    W. R. Gentry, E. A. Gislason, B. H. Mahan, and C. W. Taao, Disc. Faraday Soc. 44, 137 (1967).CrossRefGoogle Scholar
  14. 14.
    Z. Herman, J. D. Kerstetter, T. L. Rose, and R. Wolfgang, Rev. Sci. Instr. 40, 538 (1969).CrossRefGoogle Scholar
  15. 15.
    M. DePaz, J. J. Leventhal, and L. Friedman, J. Chem. Phys. 51, 3748 (1969).CrossRefGoogle Scholar
  16. 16a.
    M. S. B. Munson, J. L. Franklin, and F. H. Field, J. Phys. Chem. 68, 3098 (1964).CrossRefGoogle Scholar
  17. 16b.
    L. I. Bone, L. W. Sieck, and J. H. Futrell, J. Chem. Phys. 45, 560 (1966).CrossRefGoogle Scholar
  18. 17.
    L. 1. Bone and J. H. Futrell, J. Chem. Phys. 46, 4074 (1967).Google Scholar
  19. 18.
    J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, NSRDS-NBS-26, U.S. Dept. of Commerce, National Bureau of Standards (June 1969).Google Scholar
  20. 19.
    T. O. Tiernan and J. H. Futrell, J. Phys. Chem. 72 3080 (1968).CrossRefGoogle Scholar
  21. 20.
    J. H. Futrell and T. O. Tiernan, J. Phys. Chem. 72, 158 (1968).CrossRefGoogle Scholar
  22. 21.
    E. Lindholm, in “Ion—Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 1, American Chemical Society, Washington, D.C. (1966); E. Lindholm, I. Szabo, and P. Wilmenius, Arkiv Fysik 25, 417 (1963).Google Scholar
  23. 22.
    F. P. Abramson and J. H. Futrell, J. Phys. Chem. 72, 1994 (1968).CrossRefGoogle Scholar
  24. 23.
    B. M. Hughes, T. O. Tiernan, and J. H. Futrell, J. Phys. Chem. 73, 829 (1969).CrossRefGoogle Scholar
  25. 24.
    J. L. Beauchamp, L. R. Anders, and J. D. Baldeschwieler, J. Am. Chem. Soc. 89, 4569 (1967).CrossRefGoogle Scholar
  26. 25.
    R. D. Doepler and P. Ausloos, J. Chem. Phys. 44, 1641 (1966).CrossRefGoogle Scholar
  27. 26.
    J. H. Futrell, T. O. Tiernan, F. P. Abramson, and C. D. Miller, Rev. Sci. Instr. 39, 340 (1968).CrossRefGoogle Scholar
  28. 27.
    B. M. Hughes and T. O. Tiernan, J. Chem. Phys. 51, 4373 (1969).CrossRefGoogle Scholar
  29. 28.
    J. H. Futrell and F. P. Abramson, in “Ion—Molecule Reactions in Gases” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 107, American Chemical Society, Washington, D.C. (1966).Google Scholar
  30. 29.
    L. W. Sieck and J. H. Futrell, J. Chem. Phys. 48, 1409 (1968).CrossRefGoogle Scholar
  31. 30.
    L. W. Sieck, S. K. Searles, and P. Ausloos, J. Am. Chem. Soc. 91, 7627 (1969).CrossRefGoogle Scholar
  32. 31.
    E. Stenhagen, S. Abrahamsson, and F. W. McLafferty (Eds.), “Atlas of Mass Spectral Data,” John Wiley—Interscience, New York (1969).Google Scholar
  33. 32.
    F. P. Abramson and J. H. Futrell, J. Phys. Chem. 71, 3791 (1967).CrossRefGoogle Scholar
  34. 33.
    D. W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966).CrossRefGoogle Scholar
  35. 34.
    T. F. Moran and J. R. Roberts, J. Chem. Phys. 49, 3411 (1968).CrossRefGoogle Scholar
  36. 35.
    T. O. Tiernan and R. E. Marcotte, in “Sixth International Conference on the Physics of Electronic and Atomic Collisions, Abstracts of Papers,” p. 788, Massachusetts Institute of Technology Press, Cambridge, Mass. (1969)Google Scholar
  37. T. O. Tiernan and R. E. Marcotte, J. Chem. Phys., 53, 2107 (1970).CrossRefGoogle Scholar
  38. 36.
    B. R. Turner, J. A. Rutherford, and D. M. J. Compton, J. Chem. Phys. 48, 1602 (1968).CrossRefGoogle Scholar
  39. 37.
    R. F. Mathis, B. R. Turner, and J. A. Rutherford, J. Chem. Phys. 49, 2051 (1968).CrossRefGoogle Scholar
  40. 38.
    D. W. Vance, Phys. Rev. 169, 263 (1968).CrossRefGoogle Scholar
  41. 39.
    F. Gilmore, J. Quant. Spectrosc. and Radial. Transfer 5, 369 (1965).CrossRefGoogle Scholar
  42. 40.
    R. I. Schoen, “Thirteenth Annual Conf. on Mass Spectrometry and Allied Topics, St. Louis, Mo.,” Paper No. 2, ASTM Committee E-14 (1965).Google Scholar
  43. 41.
    D. W. Turner and D. P. May, J. Chem. Phys. 45, 471 (1966).CrossRefGoogle Scholar
  44. 42.
    K. P. Huber, Can. J. Phys. 46, 1691 (1968).CrossRefGoogle Scholar
  45. 43.
    V. Cermak, Coll. Czech. Chem. Commun. 33, 2739 (1968).Google Scholar
  46. 44.
    J. E. Collin and P. Natalis, Chem. Phys. Letters 2, 194 (1968); Intern. J. Mass Spectrom. Ion Phys. 1, 483 (1968).Google Scholar
  47. 45.
    C. R. Brundle and D. W. Turner, private communication.Google Scholar
  48. 46.
    D. A. Vroom, Thesis, University of British Columbia, 1966.Google Scholar
  49. 47.
    J. W. McGowan, Excitation—deexcitation processes, in “DASA Reaction Rate Handbook,” Chapter 15, Defense Atomic Support Agency, Washington, D.C. (1967).Google Scholar
  50. 48.
    A. J. Masson, K. Birkinshaw, and M. J. Henchman, J. Chem. Phys. 50, 4112 (1969).CrossRefGoogle Scholar
  51. 49.
    T. O. Tiernan and B. M. Hughes, in “Proc. of Sixteenth Annual Conf. on Mass Spectrometry and Allied Topics, Pittsburgh, Pa.,” p. 24, ASTM Committee E-14 (1968).Google Scholar
  52. 50.
    T. O. Tiernan, Development of a High-Efficiency Negative-Ion Source for Mass Spectrometers, OAR Progress 1969, p. 49, Office of Aerospace Research Report OAR 69–0017, AD 699300 (1969).Google Scholar
  53. 51.
    R. S. Berry, Chem. Revs. 69, 533 (1969).CrossRefGoogle Scholar
  54. 52.
    D. S. Burch and R. Geballe, Phys. Rev. 106, 188 (1957).CrossRefGoogle Scholar
  55. 53.
    J. L. Moruzzi and A. V. Phelps, J. Chem. Phys. 45, 4617 (1966).CrossRefGoogle Scholar
  56. 54.
    J. L. Moruzzi and J. T. Dakin, J. Chem. Phys. 49, 5000 (1968).CrossRefGoogle Scholar
  57. 55.
    W. L. Fite and J. A. Rutherford, Disc. Faraday Soc. 37, 192 (1964).CrossRefGoogle Scholar
  58. 56.
    H. F. Calcote and D. E. Jensen, in “Ion—Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 291, American Chemical Society, Washington, D.C. (1966).Google Scholar
  59. 57.
    E. E. Muschlitz, Jr., J. Appl. Phys. 28, 1414 (1957).CrossRefGoogle Scholar
  60. 58.
    B. P. Burtt and J. Henis, J. Chem. Phys. 41, 1510 (1964).Google Scholar
  61. 59.
    J. F. Paulson, in “Ion—Molecule Reactions in the Gas Phase,” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 28, American Chemical Society, Washington, D.C. (1966).Google Scholar
  62. 60.
    H. Neuert, R. Rackwitz, and D. Vogt, Advan. Mass Spectrometry 4, 631 (1967).Google Scholar
  63. 61.
    J. A. D. Stockdale, R. N. Compton, and P. W. Reinhardt, Phys. Rev. 184, 81 (1969).CrossRefGoogle Scholar
  64. 62.
    E. E. Ferguson, Can. J. Chem. 47, 1815 (1969).CrossRefGoogle Scholar
  65. 63.
    P. J. Chantry, J. Chem. Phys. 51, 3380 (1969).CrossRefGoogle Scholar
  66. 64.
    J. A. Rutherford and B. R. Turner, J. Geophys. Res. 72, 3795 (1967).CrossRefGoogle Scholar
  67. 65.
    W. R. Snow, R. D. Rundel, and R. Geballe, Phys. Res. 178, 228 (1969).CrossRefGoogle Scholar
  68. 66.
    D. Vogt, Int. J. Mass Spectry. 3, 81 (1969).CrossRefGoogle Scholar
  69. 67.
    J. F. Paulson, J. Chem. Phys. 52, 959 (1970).CrossRefGoogle Scholar
  70. 68.
    J. F. Paulson, J. Chem. Phys. 52, 963 (1970).CrossRefGoogle Scholar
  71. 69.
    T. O. Tiernan and B. M. Hughes, in “Proc. of Sixteenth Annual Conf. on Mass Spectrometry and Allied Topics, Pittsburgh, Pa.,” p. 24, ASTM Committee E-14 (1968).Google Scholar
  72. 70.
    B. M. Hughes and T. O. Tiernan, in “Proc. of Sixteenth Annual Conf. on Mass Spectrometry and Allied Topics, Pittsburgh, Pa.,” p. 28, ASTM Committee E-14 (1968).Google Scholar
  73. 71.
    B. M. Hughes and T. O. Tiernan, in “Proc. of Seventeenth Annual Conf. on Mass Spectrometry and Allied Topics, Dallas, Tex.,” p. 212, ASTM Committee E-14 (1969).Google Scholar
  74. 72.
    C. S. Hardin and E. E. Muschlitz, Jr., NASA Technical Note, NASA TND-2555 (1964).Google Scholar
  75. 73.
    R. K. Curran, Phys. Rev. 125, 910 (1962).CrossRefGoogle Scholar
  76. 74.
    A. Henglein and G. A. Muccini, J. Chem. Phys. 31, 1426 (1959).CrossRefGoogle Scholar
  77. 75.
    E. E. Ferguson, Advan. Electron. Electron Phys. 24, 23 (1968).Google Scholar
  78. 76.
    B. L. Moiseiwitsch, Advan. Atomic and Molecular Phys. 1, 61 (1965).CrossRefGoogle Scholar
  79. 77.
    N. S. Buchel’nikova, Usp. Fiz. Nauk 65, 351 (1958).Google Scholar
  80. 78.
    C. Lifshitz, B. M. Hughes, and T. O. Tiernan, Chem. Phys. Letters 7, 469 (1970).CrossRefGoogle Scholar
  81. 79.
    T. O. Tiernan, B. M. Hughes, and C. Lifshitz, J. Chem. Phys. 55, 5692 (1971).CrossRefGoogle Scholar
  82. 80.
    T. O. Tiernan, B. M. Hughes, and C. Lifshitz, in “Electronic and Atomic Collisions, Abstracts of Papers of the VIIth International Conference on the Physics of Electronic and Atomic Collisions,” p. 808, North-Holland Publishing Co., Amsterdam, The Netherlands (1971).Google Scholar
  83. 81.
    K. Jager, M. Simic, and A. Henglein, Z. Naturforsch, 22a, 961 (1967).Google Scholar
  84. 82.
    J. I. Brauman and L. K. Blair, J. Am. Chem. Soc. 90, 6561 (1968).CrossRefGoogle Scholar
  85. 83.
    W. M. Schubert, R. B. Murphy, and J. Robins, Tetrahedron 17, 199 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Jean H. Futrell
    • 1
  • Thomas O. Tiernan
    • 2
  1. 1.Department of ChemistryUniversity of UtahSalt Lake CityUSA
  2. 2.Aerospace Research LaboratoriesWright-Patterson Air Force BaseUSA

Personalised recommendations