Advertisement

Mass Spectra and Appearance Potentials Studied by Use of Charge Exchange in a Tandem Mass Spectrometer

  • Einar Lindholm

Abstract

The usual methods for study of mass spectra of gases and appearance potentials involve ionization of the molecules by electron impact or photon impact. These methods are of great importance both for analytical purposes and for other applications, e.g., radiation chemistry.

Keywords

Charge Exchange Photoelectron Spectrum Tandem Mass Spectrometer Translational Energy Dissociation Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Studies of Charge-Exchange Mass Spectra at Stockholm

  1. 1.
    E. Lindholm, Z. Naturforsch. 9a, 535 (1954).Google Scholar
  2. 2.
    E. Lindholm, Arkiv Fysik 8, 257 (1954).Google Scholar
  3. 3.
    E. Lindholm, Arkiv Fysik 8, 433 (1954).Google Scholar
  4. 4.
    E. Gustafsson and E. Lindholm, Arkiv Fysik 18, 219 (1960).Google Scholar
  5. 5.
    H. von Koch and E. Lindholm, Arkiv Fysik 19, 123 (1961).Google Scholar
  6. 6.
    P. Wilmenius and E. Lindholm, Arkiv Fysik 21, 97 (1962).Google Scholar
  7. 7.
    E. Lindholm and P. Wilmenius, Arkiv Kemi 20, 255 (1963).Google Scholar
  8. 8.
    E. Pettersson and E. Lindholm, Arkiv Fysik 24, 49 (1963).Google Scholar
  9. 9.
    W. A. Chupka and E. Lindholm, Arkiv Fysik 25, 349 (1963).Google Scholar
  10. 10.
    E. Pettersson, Arkiv Fysik 25, 181 (1963).Google Scholar
  11. 11.
    E. Lindholm, I. Szabo, and P. Wilmenius, Arkiv Fysik 25, 417 (1963).Google Scholar
  12. 12.
    H. von Kock, Arkiv Fysik 28, 529 (1965).Google Scholar
  13. 13.
    H. von Koch, Arkiv Fysik 28, 559 (1965).Google Scholar
  14. 14.
    H. Sjögren, Arkiv Fysik 29, 565 (1965).Google Scholar
  15. 15.
    E. Lindholm, Eleventh Annual Conf. on Mass Spectrometry and Allied Topics, May 19, 1963, San Francisco (unpublished).Google Scholar
  16. 16.
    I. Szabo, Arkiv Fysik 31, 287 (1966).Google Scholar
  17. 17.
    H. Sjögren, Arkiv Fysik 31, 159 (1966).Google Scholar
  18. 18.
    H. Sjögren and E. Lindholm, Arkiv Fysik 32, 275 (1966).Google Scholar
  19. 19.
    H. Sjögren, Arkiv Fysik 32, 529 (1966).Google Scholar
  20. 20.
    H. Sjögren, Arkiv Fysik 33, 597 (1967).Google Scholar
  21. 21.
    I. Szabo, Arkiv Fysik 33, 57 (1966).Google Scholar
  22. 22.
    I. Szabo, Arkiv Fysik 35, 339 (1967).Google Scholar
  23. 23.
    E. Lindholm, in “Ion-Molecule Reactions” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 1, American Chemical Society, Washington, D.C. (1966).Google Scholar
  24. 24.
    E. Lindholm, Arkiv Fysik 37, 37 (1968).Google Scholar
  25. 25.
    E. Lindholm, Arkiv Fysik 37, 49 (1968).Google Scholar
  26. 26.
    H. Sjögren and I. Szabo, Arkiv Fysik 37, 551 (1968).Google Scholar
  27. 27.
    G. Sahlstrom and I. Szabo, Arkiv Fysik 38, 145 (1968).Google Scholar
  28. 28.
    E. Lindholm and B. Ö. Jonsson, Chem. Phys. Letters 1, 501 (1967).Google Scholar
  29. 29.
    B. Ö. Jonsson and E. Lindholm, Arkiv Fysik 39, 65 (1969).Google Scholar
  30. 30.
    B. O. Jonsson, E. Lindholm, and A. Skerbele, Int. J. Mass Spectrom. Ion Phys. 3, 385 (1969).Google Scholar
  31. 31.
    I. Szabo, Phys. Letter 21A, 702 (1967).Google Scholar
  32. 32.
    I. Szabo, Int. J. Mass. Spectrom. Ion Phys. 3, 103 (1969).Google Scholar
  33. 33.
    I. Szabo, Int. J. Mass Spectrom. Ion Phys. 3, 169 (1969).Google Scholar
  34. 34.
    E. Lindholm and G. Sahlström, Int. J. Mass. Spectrom. Ion Phys., 4, 465 (1970).Google Scholar
  35. 35.
    G. Sahlström and E. Lindholm, to be published.Google Scholar

Studies of Charge-Exchange Mass Spectra at Baltimore

  1. 36.
    E. R. Weiner, G. R. Hertel, and W. S. Koski, J. Am. Chem. Soc. 86, 788 (1964).Google Scholar
  2. 37.
    G. R. Hertel and W. S. Koski, J. Am. Chem. Soc. 86, 1683 (1964).Google Scholar
  3. 38.
    G. R. Hertel and W. S. Koski, J. Am. Chem. Soc. 87, 404 (1965).Google Scholar
  4. 39.
    G. R. Hertel and W. S. Koski, J. Am. Chem. Soc. 87, 1686 (1965).Google Scholar

Further References

  1. 40.
    C. R. Brundle and D. W. Turner, Int. J. Mass Spectrom. Ion Phys. 2, 195 (1969).Google Scholar
  2. 41.
    J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, NSRDS-NBS 26, National Bureau of Standards, Washington, D.C. (1969).Google Scholar
  3. 42.
    M. L. Vestal, in “Fundamental Processes in Radiation Chemistry” (P. Ausloos, ed.), p. 59, Interscience, New York (1968).Google Scholar
  4. 43.
    D. Rapp and W. E. Francis, J. Chem. Phys. 37, 2631 (1962).Google Scholar
  5. 44.
    H. S. W. Massey and E. H. S. Burhop, “Electronic and Impact Phenomena,” p. 514, Oxford University Press, London (1952).Google Scholar
  6. 45.
    J. H. Futrell and T. O. Tiernan, in “Fundamental Processes in Radiation Chemistry” (P. Ausloos, ed.), p. 171, Interscience, New York (1968).Google Scholar
  7. 46.
    R. F. Stebbings, in “Advances in Chemical Physics” (I. Prigogine, ed.), Vol. 10, p. 195, Interscience, New York (1966).Google Scholar
  8. 47.
    J. Hasted, Proc. Roy. Soc. A205, 421 (1951).Google Scholar
  9. 48.
    D. W. Turner, Tetrahedron Letters 35, 3419 (1967).Google Scholar
  10. 49.
    W. L. Fite, R. T. Brackman, and W. R. Snow, Phys. Rev. 112, 1161 (1958).Google Scholar
  11. 50.
    R. F. Stebbings, A. C. H. Smith, and H. Erhardt, J. Chem. Phys. 39, 968 (1963).Google Scholar
  12. 51.
    R. F. Stebbings, A. C. H. Smith, and H. Erhardt, J. Geophys. Res. 69, 2349 (1964).Google Scholar
  13. 52.
    R. S. Lehrle, J. C. Robb, and D. W. Thomas, J. Sci. Instr. 39, 458 (1962).Google Scholar
  14. 53.
    J. B. Homer, R. S. Lehrle, J. C. Robb, M. Takahasi, and D. W. Thomas, Advan. Mass Spectrometry 2, 503 (1962).Google Scholar
  15. 54.
    J. B. Homer, R. S. Lehrle, J. C. Robb, and D. W. Thomas, Advan. Mass Spectrometry 3, 415 (1966).Google Scholar
  16. 55.
    J. C. Abbe and J. P. Adloff, Compt. Rend. 258, 3003 (1964).Google Scholar
  17. 56.
    H. W. Wachsmuth and H. Ewald, Z. Naturforsch. 18a, 389 (1963).Google Scholar
  18. 57.
    J. H. Futrell and C. D. Miller, Rev. Sci. Instr. 37, 1521 (1966).Google Scholar
  19. 58.
    W. L. Fite, in “Symposium on Laboratory Measurements of Aeronomic Interest, International Association of Geomagnetism and Aeronomy, York University, Toronto, Canada, 1968.”Google Scholar
  20. 59.
    C. F. Barnett and H. B. Gilbody, in “Methods of Experimental Physics” (L. Marton, ed.), Vol. 7A, p. 390, Academic Press, New York (1968).Google Scholar
  21. 60.
    C. E. Moore, Atomic Energy Levels, NBS Circ. 467 ( 1949, 1952, 1958 ).Google Scholar
  22. 61.
    R. C. C. Lao, R. W. Rozett, and W. S. Koski, J. Chem. Phys. 49, 4202 (1968).Google Scholar
  23. 62.
    V. H. Dibeler, F. L. Mohler, and R. M. Reese, J. Chem. Phys. 18, 156 (1950).Google Scholar
  24. 63.
    D. W. Vance, J. Chem. Phys. 48, 1873 (1968).Google Scholar
  25. 64.
    B. R. Turner, J. A. Rutherford, and D. M. J. Compton, J. Chem. Phys. 48, 1602 (1968).Google Scholar
  26. 65.
    H. D. Hagstrum, Phys. Rev. 104, 309 (1956).Google Scholar
  27. 66.
    D. C. Frost, C. A. McDowell, and D. A. Vroom, Chem. Phys. Letters 1, 93 (1967).Google Scholar
  28. 67.
    P. Mitchell and M. Wilson, Chem. Phys. Letters 3, 389 (1969).Google Scholar
  29. 68.
    W. R. Henderson, J. E. Mentall, and W. L. Fite, J. Chem. Phys. 46, 3447 (1967).Google Scholar
  30. 69.
    R. G. Bennet and E. W. Dalby, J. Chem. Phys. 32, 1111 (1960).Google Scholar
  31. 70.
    O. Edqvist, E. Lindholm, L. E. Selin, H. Sjögren, and L. Asbrink, Arkiv Fysik 40, 439 (1970).Google Scholar
  32. 71.
    W. McGowan and L. Kerwin, Can. J. Phys. 42, 2086 (1964).Google Scholar
  33. 72.
    H. M. Rosenstock and M. Krauss, in “Mass Spectrometry of Organic Ions” (F. McLafferty, ed.), p. I, Academic Press, New York (1963).Google Scholar
  34. 73.
    D. W. Turner and M. I. Al-Joboury, L. Chem. Phys. 37, 3007 (1962).Google Scholar
  35. 74.
    M. I. Al-Joboury and D. W. Turner, J. Chem. Soc. 1964, 4434.Google Scholar
  36. 75.
    L. Asbrink, private communication.Google Scholar
  37. 76.
    D. W. Turner and D. P. May, J. Chem. Phys. 45, 471 (1966).Google Scholar
  38. 77.
    I. P. Flaks and E. S. Solovev, Soviet Phys.—Technical Physics 3, 577 (1958).Google Scholar
  39. 78.
    C. F. Giese, in “Advances in Chemical Physics” (I. Prigogine, ed.), Vol. 10, p. 247, Inter-science, New York (1966).Google Scholar
  40. 79.
    J. H. Futrell and F. P. Abramson, in “Ion-Molecule Reactions” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), p. 107. American Chemical Society, Washington, D.C. (1966).Google Scholar
  41. 80.
    W. B. Maier II, J. Chem. Phys. 42, 1790 (1965).Google Scholar
  42. 81.
    B. O. Jonsson, private communication.Google Scholar
  43. 82.
    A. D. Baker, C. Baker, C. R. Brundle, and D. W. Turner, Int. J. Mass Spectrom. Ion Phys. 1, 285 (1968).Google Scholar
  44. 83.
    K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, and K. Siegbahn, Chem. Phys. Letters 1, 613 (1967).Google Scholar
  45. 84.
    F. H. Field and J. L. Franklin, “Electron Impact Phenomena and the Properties of Gaseous Ions,” Academic Press, New York (1957).Google Scholar
  46. 85.
    E. N. Lassettre, A. Skerbele, and M. A. Dillon, J. Chem. Phys. 49, 2382 (1968).Google Scholar
  47. 86.
    E. Lindholm, to be published.Google Scholar
  48. 87.
    G. R. Branton, D. C. Frost, T. Makita, C. A. McDowell, and I. A. Stenhouse, J. Chem. Phys. 52, 802 (1970).Google Scholar
  49. 88.
    B. Brehm, Z. Naturforsch. 21a, 196 (1966).Google Scholar
  50. 89.
    R. S. Mulliken, J. Chem. Phys. 3, 517 (1935).Google Scholar
  51. 90.
    J. W. Moskowitz and M. C. Harrison, J. Chem. Phys. 42, 1726 (1965).Google Scholar
  52. 91.
    L. Friedman, F. A. Long, and M. Wolfsberg, J. Chem. Phys. 27, 613 (1957).Google Scholar
  53. 92.
    W. H. Fink and L. C. Allen, J. Chem. Phys. 46, 2261 (1967).Google Scholar
  54. 93.
    V. H. Dibeler, J. A. Walker, and H. M. Rosenstock, J. Res. Natl. Bur. Std. 70A, 459 (1966).Google Scholar
  55. 94.
    G. R. Branton, D. C. Frost, F. G. Herring, C. A. McDowell, and I. A. Stenhouse, Chem. Phys. Letters 3, 581 (1969).Google Scholar
  56. 95.
    L. Asbrink, O. Edqvist, E. Lindholm, and L. E. Selin, Chem. Phys. Letters, 5, 192 (1970).Google Scholar
  57. 96.
    I. Szabo, to be published.Google Scholar
  58. 97.
    L. I. Bone and J. H. Futrell, J. Chem. Phys. 47, 4366 (1967).Google Scholar

References Added in Proof

  1. 98.
    P. S. Wilson, R. W. Rozett, and W. S. Koski, J. Chem. Phys. 52, 5321 (1970).Google Scholar
  2. 99.
    B. R. Turner, see Ref. 98.Google Scholar
  3. 100.
    B. M. Hughes and T. O. Tiernan, J. Chem. Phys. 55, 3419 (1971).Google Scholar
  4. 101.
    R. F. Mathis, B. R. Turner, and J. A. Rutherford, J. Chem. Phys. 49, 2051 (1968).Google Scholar
  5. 102.
    R. F. Mathis, B. R. Turner, and J. A. Rutherford, J. Chem. Phys. 50, 2270 (1969).Google Scholar
  6. 103.
    P. J. Derrick, L. Asbrink, O. Edqvist, B. O. Jonsson, and E. Lindholm, Mt. J. Mass Spectrom. Ion Phys. 6, 161 (1971) (Furan).Google Scholar
  7. 104.
    P. J. Derrick, L. Asbrink, O. Edqvist, B. Ö. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 6, 177 (1971) (Thiophene).Google Scholar
  8. 105.
    P. J. Derrick, L. Asbrink, O. Edqvist, B. O. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 6, 191 (1971) (Pyrrole).Google Scholar
  9. 106.
    P. J. Derrick, L. Asbrink, O. Edqvist, B. Ö. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 6, 203 (1971) (Cyclopentadiene).Google Scholar
  10. 107.
    C. Fridh, L. Asbrink, B. O. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 8, 85 (1972) (s-Triazine).Google Scholar
  11. 108.
    C. Fridh, L. Asbrink, B. Ö. Jonsson, and E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 8, 101 (1972) (Pyrazine).Google Scholar
  12. 109.
    L. Asbrink, C. Fridh, B. Ö. Jonsson, and E. Lindholm, Mt. J. Mass Spectrom Ion Phys. 8, 215 (1972) (Pyrimidine).Google Scholar
  13. 110.
    L. Asbrink, C. Fridh, B. Ö. Jonsson, and E. Lindholm, Mt. J. Mass Spectrom. Ion Phys. 8, 229 (1972) (Pyridazine).Google Scholar
  14. 111.
    C. Fridh, L. Asbrink, B. Ö. Jonsson, and E. Lindholm, to be published (s-Tetrazine).Google Scholar
  15. 112.
    I. Szabo and P. J. Derrick, Int. J. Mass Spectrom. Ion Phys. 7, 55 (1971) (C2H2).Google Scholar
  16. 113.
    P. J. Derrick and I. Szabo, Mt. J. Mass Spectrom. Ion Phys. 7, 71 (1971) (CO).Google Scholar
  17. 114.
    I. Szabo, to be published (NO, CO2).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Einar Lindholm
    • 1
  1. 1.Physics DepartmentRoyal Institute of TechnologyStockholmSweden

Personalised recommendations