Advertisement

Flowing Afterglow Studies

  • Eldon E. Ferguson

Abstract

The experimental technology of the flowing afterglow technique, including data analysis procedures, has very recently been described in great detail.(1) The present discussion will center on some recent results and their implications for increasing our understanding of ion-neutral reaction processes.

Keywords

Rotational Excitation Binary Reaction Flowing Afterglow Large Rate Constant Collision Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, Flowing afterglow measurements of ion-neutral reactions, In “Advances in Atomic and Molecular Physics” D. R. Bates and I. Estermann, eds., Vol. 5, pp. 1–56, Academic Press, New York (1969).Google Scholar
  2. 2.
    J. A. Burt, J. L. Dunn, M. J. McEwan, M. M. Sutton, A. E. Roche, and H. I. Schiff, Some ion-molecule reactions of H3+ and the proton affinity of H2, J. Chem. Phys., 52, 6062–6075 (1970).CrossRefGoogle Scholar
  3. 3a.
    A. L. Farragher, J. A. Peden, and W. L. Fite, Charge transfer of N2+, O2+, and NO+ to sodium atoms at thermal energies, J. Chem. Phys. 50, 287–293 (1969).CrossRefGoogle Scholar
  4. 3b.
    C. J. Howard, H. W. Rundle, and F. Kaufman, Water, cluster formation rates of NO+—He, Ar, N2, and O2 at 296°K, J. Chem. Phys. 55, 4772–4776 (1971).CrossRefGoogle Scholar
  5. 4.
    R. C. Bolden, R. S. Hemsworth, M. J. Shaw, and N. D. Twiddy, Measurements of thermal energy ion-neutral reaction rate coefficients for rare gas ions, J. Phys. B. 3, 45–60 (1970).CrossRefGoogle Scholar
  6. 5.
    A. L. Schmeltekopf, E. E. Ferguson, and F. C. Fehsenfeld, Afterglow studies of the reactions He+, He23S), and O+ with vibrationally excited N2, J, Chem. Phys. 48, 2966–2973 (1968).CrossRefGoogle Scholar
  7. 6.
    F. C. Fehsenfeld, D. L. Albritton, J. A. Burt, and H. I. Schiff, Associative-detachment reactions of O and O2 by O2(1Δg,), Can. J. Chem. 47, 1793–1795 (1969).CrossRefGoogle Scholar
  8. 7.
    E. E. Ferguson, D. K. Bohme, F. C. Fehsenfeld, and D. B. Dunkin, Temperature dependence of slow ion-atom interchange reactions, J. Chem. Phys. 50, 5039–5040 (1969).CrossRefGoogle Scholar
  9. 8.
    D. B. Dunkin, F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson, Ion-molecule reaction studies from 300–600°K in a temperature-controlled flowing afterglow system, J. Chem. Phys. 49, 1365–1371 (1968).CrossRefGoogle Scholar
  10. 9.
    D. K. Bohme, D. B. Dunkin, F. C. Fehsenfeld, and E. E. Ferguson, Flowing afterglow studies of ion-molecule association reactions, J. Chem. Phys. 51, 863–872 (1969).CrossRefGoogle Scholar
  11. 10.
    D. K. Bohme, D. B. Dunkin, F. C. Fehsenfeld, and E. E. Ferguson, Observation of saturation in three-body ion-neutral association reactions, J. Chem. Phys. 49, 5201–5205 (1968).CrossRefGoogle Scholar
  12. 11.
    D. L. Albritton, A. L. Schmeltekopf, and E. E. Ferguson, Spectroscopic investigation of the ion-molecule reaction of He+ and N2, Bull. Am. Phys. Soc. 13, 212 (1968)Google Scholar
  13. D. L. Albritton, A. L. Schmeltekopf, and E. E. Ferguson, The mechanism for the reaction of He+ with N2, In Sixth Int. Conf. on the Physics of Electronic and Atomic Collisions, Abstracts of Papers, pp. 331–332, MIT Press, Cambridge (1969).Google Scholar
  14. 12.
    E. E. Ferguson, F. C. Fehsenfeld, P. D. Golden, and A. L. Schmeltekopf, Positive ion-neutral reactions in the ionosphere, J. Geophys. Res. 70, 4323–4329 (1965).CrossRefGoogle Scholar
  15. 13.
    R. B. Norton, E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, Ion-neutral reactions in the Martian ionosphere, Planetary Space Sci. 14, 969–978 (1966).CrossRefGoogle Scholar
  16. 14.
    F. C. Fehsenfeld, A. L. Schmeltekopf, H. I. Schiff, and E. E. Ferguson, Laboratory measurements of negative-ion reactions of atmospheric interest, Planetary Space Sci. 15, 373–379 (1967).CrossRefGoogle Scholar
  17. 15.
    F. C. Fehsenfeld and E. E. Ferguson, Further laboratory measurements of negative reactions of atmospheric interest, Planetary Space Sci. 16, 701–702 (1968).CrossRefGoogle Scholar
  18. 16.
    F. C. Fehsenfeld, E. E. Ferguson, and D. K. Bohme, Additional flowing afterglow measurements of negative-ion reactions of D-region interest, Planetary Space Sci. 17, 1759–1762 (1969).CrossRefGoogle Scholar
  19. 17.
    E. E. Ferguson and F. C. Fehsenfeld, Some aspects of the metal ion chemistry of the earth’s atmosphere, J. Geophys. Res. 73, 6215–6223 (1968).CrossRefGoogle Scholar
  20. 18.
    F. C. Fehsenfeld and E. E. Ferguson, Origin of water cluster ions in the D-region, J. Geophys. Res. 74, 2217–2222 (1969).CrossRefGoogle Scholar
  21. 19.
    E. E. Ferguson and F. C. Fehsenfeld, Water-vapor ion cluster concentrations in the D-region, J. Geophys. Res. 74, 5743–5751 (1969).CrossRefGoogle Scholar
  22. 20.
    E. E. Ferguson, Ionospheric ion-molecule reaction rates, Rev. Geophys. 5, 305–327 (1967).CrossRefGoogle Scholar
  23. 21.
    W. L. Fite, Positive-ion reactions, Can. J. Chem. 47, 1797–1807 (1969).CrossRefGoogle Scholar
  24. 22.
    E. E. Ferguson, Negative-ion-molecule reactions, Can. J. Chem. 47, 1815–1820 (1969).CrossRefGoogle Scholar
  25. 23.
    A. V. Phelps, Laboratory studies of electron attachment and detachment processes of aeronomic interest, Can. J. Chem. 47, 1783–1793 (1969).CrossRefGoogle Scholar
  26. 24.
    E. E. Ferguson, Laboratory measurements of F-region reaction rates (Paper presented at the General Scientific Assembly of the Int. Assoc. of Geomagnetism and Aeronomy, Madrid, Spain, Sept. 1969), Annales de Geophysique 25, 819–823 (1969).Google Scholar
  27. 25.
    E. E. Ferguson, D-Region ion chemistry, Rev. Geophys. Space Phys. 9, 997–1008 (1971).CrossRefGoogle Scholar
  28. 26.
    A. L. Schmeltekopf, F. C. Fehsenfeld, and E. E. Ferguson, Laboratory measurement of the rate constant for H + H → H2 + e, Astrophys. J. 148, 155–156 (1967).CrossRefGoogle Scholar
  29. 27.
    E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, Ion-molecule reaction rates measured in a discharge afterglow, In “Advances in Chemistry Series, No. 80, pp. 83–91, American Chemical Society, Washington, D.C. (1969).Google Scholar
  30. 28.
    F. C. Fehsenfeld, A. L. Schmeltekopf, D. B. Dunkin, and E. E. Ferguson, Compilation of Reaction Rate Constants Measured in the ESSA Flowing Afterglow System to August 1969, ESSA Technical Report, ERL 135-AL 3, September 1969.Google Scholar
  31. 29.
    F. H. Field, J. L. Franklin, and F. W. Lampe, Reactions of gaseous ions. I. Methane and ethylene, J. Am. Chem. Soc. 79, 2419–2429 (1957).CrossRefGoogle Scholar
  32. 30.
    G. Gioumousis and D. P. Stevenson, Reactions of gaseous molecule ions with gaseous molecules. V. Theory, J. Chem. Phys. 29, 294–299 (1958).CrossRefGoogle Scholar
  33. 31.
    H. S. Johnston, “Gas-Phase Reaction Rate Theory”, Ronald Press, New York (1966).Google Scholar
  34. 32.
    J. V. Dugan, J. H. Rice, and J. L. Magee, Evidence for long-lived ion-molecule collision complexes from numerical studies, Chem. Phys. Letters 3, 323–326 (1969).CrossRefGoogle Scholar
  35. 33.
    P. Pechukas and J. C. Light, On detailed balancing and statistical theories of chemical kinetics, J. Chem. Phys. 42, 3281–3291 (1965).CrossRefGoogle Scholar
  36. 34.
    D. Smith and R. A. Fouracre, The temperature dependence of the reaction rate coefficients of O+ ions with molecular oxygen and nitrogen, Planetary Space Sci. 16, 243–252 (1968).CrossRefGoogle Scholar
  37. 35.
    R. Johnsen, H. L. Brown, and M. A. Biondi, Ion-molecule reactions involving N2+, N+ O2+, and O+ ions from 300°K to ∼ 1 eV, J. Chem. Phys., 52, 5080–5084 (1970).CrossRefGoogle Scholar
  38. 36.
    F. H. Field, Reactions of gaseous ions. VIII. Multiple-order ion-molecule reactions and the ultrahigh-pressure mass spectrum of ethylene, J. Am. Chem. Soc. 83, 1523–1534 (1961).CrossRefGoogle Scholar
  39. 37.
    S. W. Benson, “Thermochemical Kinetics”, p. 109, Wiley, New York (1968).Google Scholar
  40. 38.
    J. Yang and D. C. Conway, Bonding in ion clusters. I. O4+, J. Chem. Phys. 40, 1729–1735 (1964).CrossRefGoogle Scholar
  41. 39.
    D. C. Conway, Mechanism of ion-molecule association reactions, J. Chem. Phys., 52, 1622–1623 (1970).CrossRefGoogle Scholar
  42. 40.
    N. G. Adams, D. K. Bohme, D. B. Dunkin, F. C. Fehsenfeld, and E. E. Ferguson, Flowing afterglow studies of formation and reactions of cluster ions of O2+, O2, and O, J. Chem. Phys., 52, 3133–3140 (1970).CrossRefGoogle Scholar
  43. 41.
    J. D. Payzant and P. Kebarle, Clustering equilibrium N2+ + 2N2 = N4+ + N2 and the bond dissociation energy of N4+, J. Chem. Phys.,53, 4723–4724 (1970).CrossRefGoogle Scholar
  44. 42.
    B. H. Mahan, Mechanism for ion-neutral association reactions, J. Chem. Phys. 43, 3080–3082 (1965).CrossRefGoogle Scholar
  45. 43.
    E. C. Y. Inn. Charge-transfer between He and N2, Planetary Space Sci. 15, 19–25 (1967).CrossRefGoogle Scholar
  46. 44.
    R. F. Stebbings, J. A. Rutherford, and B. R. Turner, Loss of He ions in the upper atmosphere, Planetary Space Sci. 13, 1125–1129 (1965).CrossRefGoogle Scholar
  47. 45.
    A. Good, D. A. Durden, and P. Kebarle, Laboratory determination of the kinetic mechanism involved in the formation of H+(H2On in air at pressures of 0.5−4 Torr containing traces of water, Presented at Symp. of the Physics and Chemistry of the Upper Atmosphere, Stanford Research Inst. 24–25 June 1969.Google Scholar
  48. 46.
    M. A. Haney and J. L. Franklin, Heats of formation of H3O+, H3 S+, and NH4+, J. Chem. Phys. 50, 2028–2031 (1969).CrossRefGoogle Scholar
  49. 47.
    W. C. Lineberger and L. J. Puckett, Hydrated positive ions in nitric oxide-water afterglows, Phys. Rev. 187, 286–291 (1969).CrossRefGoogle Scholar
  50. 48.
    L. J. Puckett and W. C. Lineberger, Negative-ion reactions in NO-H2O mixtures, Phys. Rev., 21, 1635–1641 (1970).Google Scholar
  51. 49.
    P. Kebarle, S. K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, The solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions: H+(H2O) n −1 + H2O → H+(H2O) n, J. Am. Chem. Soc. 89, 6393–6399 (1967).CrossRefGoogle Scholar
  52. 50.
    F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, Thermal-energy associative-detachment reactions of negative ions, J. Chem. Phys. 45, 1844–1845 (1966).CrossRefGoogle Scholar
  53. 51.
    J. C. Y. Chen, Theory of atomic collisions with negative ions: associative-detachment, Phys. Rev. 156, 12–25 (1967).CrossRefGoogle Scholar
  54. 52.
    E. E. Ferguson, Thermal energy ion-molecule reactions, Adv. Electron. Electron Phvs. 24 1–50 (1968).CrossRefGoogle Scholar
  55. 53.
    J. L. Moruzzi, J. W. Ekin, and A. V. Phelps, Electron production by associative-detachment of O ions with NO, CO, and H2, J. Chem. Phys. 48, 3070–3076 (1968).CrossRefGoogle Scholar
  56. 54.
    J. N. Bardsley and F. Mandl, Resonant scattering of electrons by molecules, Rep. Prog. Phys. XXXI, 471–531 (1968).CrossRefGoogle Scholar
  57. 55.
    F. C. Fehsenfeld and E. E. Ferguson, A model for associative-detachment reactions of the insertion type, J. Chem. Phys. 51, 3512–3514 (1969).CrossRefGoogle Scholar
  58. 56.
    D. K. Bohme and L. B. Young, Gas-phase reactions of oxide radical ion and hydroxide ion with simple olefins and of carbanions with oxygen, J. Am. Chem. Soc., 92, 3301–3309 (1970).CrossRefGoogle Scholar
  59. 57.
    J. F. Paulson, Some negative-ion reactions in simple gases, In Ion-Molecule Reactions in the Gas Phase” (Advances in Chemistry Series, No. 58, P. J. Ausloos, ed.), pp. 28–43, American Chemical Society, Washington, D.C. (1966).Google Scholar
  60. 58.
    E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf, Geometrical considerations for negative ion processes, J. Chem. Phys. 47, 3085–3086 (1967).CrossRefGoogle Scholar
  61. 59.
    J. N. Bardsley, Negative ions of N2O and CO2, J. Chem. Phys. 51, 3384–3389 (1969).CrossRefGoogle Scholar
  62. 60.
    C. R. Claydon, G. A. Segal, and H. S. Taylor, Theoretical interpretation of the electron scattering spectrum of CO2, J. Chem. Phys., 52, 3387–3398 (1969).CrossRefGoogle Scholar
  63. 61.
    M. Krauss, A. C. Wahl, and W. Zemke, Potential energies of the ground and some excited states of O2, Abstracts of the VII ICPEAC, 1168–1169, North-Holland Publ. Co., Amsterdam 1971.Google Scholar
  64. 62.
    H. H. Michels and F. E. Harris, Adiabatic potential curves for the system O + O, Abstracts of the VII ICPEAC, 1170–1171, North-Holland Publ. Co., Amsterdam (1971).Google Scholar
  65. 63.
    K. J. Laidler, Elementary processes in the radiation chemistry of water, J. Chem. Phys. 22, 1740–1745 (1954).CrossRefGoogle Scholar
  66. 64.
    G. J. Schulz, Excitation and negative ions in H2O, J. Chem. Phys. 33, 1661–1665 (1960).CrossRefGoogle Scholar
  67. 65.
    P. Natalis and J. E. Collin, The first ionization potential of nitrogen dioxide, Chem. Phys. Letters 2, 79–82 (1968).CrossRefGoogle Scholar
  68. 66.
    F. C. Fehsenfeld, E. E. Ferguson, and M. Mosesman, Measurement of the thermal energy reaction NO2+ + NO → NO+ NO2, Chem. Phys. Letters 4, 73–74 (1969).CrossRefGoogle Scholar
  69. 67.
    M. McFarland, D. B. Dunkin, F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson, Collisional detachment studies of NO-, J. Chem. Phys. 56, (1972) in press.Google Scholar
  70. 68.
    F. C. Fehsenfeld, Si+ and SiO+ reactions of atmospheric importance, Can. J. Chem. 47, 1808–1809 (1969).CrossRefGoogle Scholar
  71. 69.
    A. G. Gaydon, “Dissociation Energies and Spectra of Diatomic Molecules,” 3rd ed., Chapman and Hall, London (1968).Google Scholar
  72. 70.
    D. L. Hildenbrand and E. Murad, The dissociation energy and ionization potential of silicon monoxide, J. Chem. Phys. 51, 807–811 (1969).CrossRefGoogle Scholar
  73. 71.
    D. C. Conway and L. E. Nesbitt, Stability of O4, J. Chem. Phys. 48, 509–510 (1968).CrossRefGoogle Scholar
  74. 72.
    J. L. Pack and A. V. Phelps, Electron attachment and detachment. II. Mixtures of O2 and CO2, and of O2 and H2O, J. Chem. Phys. 45, 4316–4329 (1966).CrossRefGoogle Scholar
  75. 73.
    D. K. Bohme, R. A. Vane, F. C. Fehsenfeld, and E. E. Ferguson, The reactions of O2+ ions with simple alkanes and ethylene, in “17th Annual Conf. on Mass Spectrometry and Allied Topics, Dallas, Texas, May 1969,” pp. 383–393.Google Scholar
  76. 74.
    D. K. Bohme and F. C. Fehsenfeld, Thermal reactions of O ions with saturated hydrocarbon molecules, Can. J. Chem. 47, 2717–2719 (1969).CrossRefGoogle Scholar
  77. 75.
    G. S. Janik and D. C. Conway, J. Phys. Chem. 71, 823 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Eldon E. Ferguson
    • 1
  1. 1.Aeronomy LaboratoryNOAA Research LaboratoriesBoulderUSA

Personalised recommendations