Isolation, Reactivity and Aggression: Evidence for an Involvement of Brain Catecholamines and Serotonin

  • Annemarie S. Welch
  • Bruce L. Welch


Animals that live in environments having different mean levels of environmental stimulation metabolize various brain neurochemicals at different rates. Norepinephrine (NE), dopamine (DA), serotonin (5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), aspartic acid, N-acetyl aspartic acid, glutamic acid, glutamine, gamma-aminobutyric acid, and the enzymes acetylcholinesterase and cholinesterase, are among the neurochemicals that have been shown either to occur in different concentrations or to turnover at different rates in animals that live in, or are placed into, different environmental situations (Agrawal, Fox & Himwich, 1967; Bennett et al., 1964; Garattini, Giacalone & Valzelli, 1967; Giacalone et al., 1968; Krech, Rosenzweig & Bennett, 1966; Marcucci et al., 1968; Valzelli & Garattini, 1968; Welch, 1967; Welch & Welch, 1968a, 1968c, 1968e).


Tyrosine Hydroxylase Male Mouse Biogenic Amine Medulla Oblongata Relative Aggressivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACHESON, G. H. (Ed). Second Symposium on Catecholamines. Baltimore: Williams and Wilkins Co., 1966. Reprinted from Pharmacological Reviews, 1966, 18, 1–803.Google Scholar
  2. AEBI, H. Mitochondrial structure as a controlling factor of monoamine oxidase activity and the action of amino-oxidase inhibitors. Biochem. Pharmacol., 1962, 9, 135–140.PubMedCrossRefGoogle Scholar
  3. AGHAJANIAN, G. K., ROSECRANS, J. A., & SHEARD, M. H. Serotonin: release in the forebrain by stimulation of midbrain raphe. Science, 1967, 156, 402–403.PubMedCrossRefGoogle Scholar
  4. AGRAWAL, H. C., FOX, M. W., & HIMWICH, W. A. Neurochemical and behavioral effects of isolation-rearing in the dog. Life Sci., 1967, 6, 71–78.PubMedCrossRefGoogle Scholar
  5. ALLEE, W. C. Group organization among vertebrates. Science, 1942, 95, 289–293.PubMedCrossRefGoogle Scholar
  6. ANDEN, N. E., DAHLSTROM, A., FUXE, K., LARSSON, K., OLSON, L., & UNGERSTEDT, U. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand., 1966a, 67, 313–326.CrossRefGoogle Scholar
  7. ANDEN, NE., FUXE, K., & HOKFELT, T. The importance of the nervous impulse flow for the depletion of the monoamines from central neurons by some drugs. J. Pharm. Pharmacol., 1966b, 18, 630–632.PubMedCrossRefGoogle Scholar
  8. BALDESSARINI, R. J., & KOPIN, I. J. Tritiated norepinephrine: release from brain slices by electrical stimulation. Science, 1966, 152, 1630–1631.PubMedCrossRefGoogle Scholar
  9. BARNETT, S. A. Social Stress. In J. D. Carthy and C. L. Duddington (Eds.) Viewpoints in Biology. London: Butterworths, 1964, v. 3, Pp. 170–218.Google Scholar
  10. BARRETT, A. M., & STOCKHAM, M. A. The effect of housing conditions and simple experimental procedures upon the corticosterone level in the plasma of rats. J. Endocrin., 1963, 26, 97–105.CrossRefGoogle Scholar
  11. BENNETT, E. L., DIAMOND, M. C., KRECH, D., & ROSENZWEIG, M. R. Chemical and anatomical plasticity of brain. Science, 1964, 146, 610–619.PubMedCrossRefGoogle Scholar
  12. BLISS, E. L., & ZWANZIGER, J. Brain amines and emotional stress. J. Psychiat. Res., 1966, 4, 189–198.PubMedCrossRefGoogle Scholar
  13. BOURGAULT, P. C., KARCZMAR, A. G., & SCUDDER, C. L. Contrasting behavioral, pharmacological, neurophysiological, and biochemical profiles of C57BL/6 and SC-I strains of mice. Life Sci., 1963, 8, 533–553.PubMedCrossRefGoogle Scholar
  14. BRONSON, F. H. Effects of social stimulation on adrenal and reproductive physiology of rodents. In M. L. Conalty (Ed.) Husbandry of Laboratory Animals. New York: Academic Press, 1967, Pp. 513–544.Google Scholar
  15. BROWN, B. B. CNS drug actions and interaction in mice. Arch. Internat. Pharmacodynie, 1960, 128, 391–414.Google Scholar
  16. BUTTERWORTH, K. R., & MANN, M. The adrenaline and noradrenaline content of the adrenal gland of the cat following depletion by acetylcholine. Brit. J. Pharmacol., 1957, 12, 415–421.PubMedGoogle Scholar
  17. CHANCE, M. R. A. Factors influencing the toxicity of sympathomimetic amines to solitary mice. J. Pharmacol. Exptl. Therap., 1947, 89, 289–296.Google Scholar
  18. CHASE, T. M., BREESE, G. R., & KOPIN, I. J. Serotonin release from brain slices by electrical stimulation: regional differences and effect of LSD. Science, 1967, 157, 1461–1463.PubMedCrossRefGoogle Scholar
  19. CHRISTIAN, J. J., LLOYD, J. A., & DAVIS, D. E. The role of endocrines in the self-regulation of mammalian populations. Rec. frog. Horm. Res., 1965, 21, 501–570.Google Scholar
  20. CLARKE, J. R. The effect of fighting on the adrenals, thymus and spleen of the vole (Microtus agrestis). J. Endocrin., 1953, 9, 114–126.CrossRefGoogle Scholar
  21. CONSOLO, S., GARATTINI, S., & VALZELLI, L. Amphetamine toxicity in aggressive mice. J. Pharm. Pharmacol., 1965a, 17, 53–54.PubMedCrossRefGoogle Scholar
  22. CONSOLO, S., GARATTINI, S., & VALZELLI, L. Sensitivity of aggressive mice to centrally acting drugs. J. Pharm. Pharmacol., 1965b, 17, 594–595.PubMedCrossRefGoogle Scholar
  23. CORRODI, H., FUXE, K., & HOKFELT, T. Refillment of the catecholamine stores with 3, 4-dihydroxyphenylalanine after depletion induced by inhibition of tyrosine hydroxylase. Life Sci., 1966, 5, 605–611.PubMedCrossRefGoogle Scholar
  24. DAHLSTROM, A., & FUXE, K. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand., 1965a, 62 (Suppl. 232), 5–55.Google Scholar
  25. DAHLSTROM, A., FUXE, K., KERNALL, D., & SEDVALL, G. Reduction of monoamine stores in the terminals of bulbospinal neurons following stimulation in the medulla oblongata. Life Sci., 1965b, 4, 1207–1212.PubMedCrossRefGoogle Scholar
  26. DAHLSTROM, A., & HAGGENDAL, J. Studies on the transport and life-span of amine storage granules in peripheral adrenergic neuron system. Acta Physiol. Scand., 1966, 67, 278–288.PubMedCrossRefGoogle Scholar
  27. DAVIES, P. W., & BRONK, D. W. Oxygen tension in mammalian brain. Fed. Froc., 1957, 16, 689–692.Google Scholar
  28. DAVIES, W. M. Day-night periodicity in pentobarbital response of mice and the influence of socio-psychological conditions. Experientia, 1962, 18, 235–237.CrossRefGoogle Scholar
  29. ELEFTHERIOU, B. E., & CHURCH, R. L. Brain levels of serotonin and norepinephrine in mice after exposure to aggression and defeat. Physiol. Behay., 1968, 3, 977–980.CrossRefGoogle Scholar
  30. FRIEDMAN, A. H., & WALKER, C. A. Circadian rhythms in rat mid-brain and caudate nucleus liogenic amine levels. J. Physiol. (Loud.), 1968, 197, 77–85.Google Scholar
  31. FUXE, K. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand., 1965, 64 (Suppl. 247), 37–85.Google Scholar
  32. FUXE, K., & HANSON, L. C. F. Central catecholamine neurons and conditioned avoidance behavior. Psychopharmacologia (Berl.), 1967, 11, 439–447.CrossRefGoogle Scholar
  33. GARATTINI, S., GIACALONE, E., & VALZELLI, L. Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. J. Pharm. Pharmacol., 1967, 19, 338–339.PubMedCrossRefGoogle Scholar
  34. GARATTINI, S., & SHORE, P. A.(Eds.). The Biological Role of Indole-alkylamine Derivatives. Advances in Pharmacology, Vol. 6A and 6B. New York: Academic Press, 1968.Google Scholar
  35. GIACALONE, E., TANSELLA, M., VALZELLI, L., & GARATTINI, S. Brain serotonin metabolism in isolated aggressive mice. Biochem. Pharmacol., 1968, 17, 1315–1327.PubMedCrossRefGoogle Scholar
  36. GINSBURG, B., & ALLEE, W. C. Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiol. Zool., 1942, 15, 485–506.Google Scholar
  37. GREENBLATT, E. M., & OSTERBERG, A. C. Correlations of activating and lethal effects of excitatory drugs in grouped and isolated mice. J. Pharmacol. Exptl. Therap., 1961, 131, 115–119.Google Scholar
  38. GUNN, J. A., & GURD, M. R. The action of some amines related to adrenaline, cyclohexylalkylamines. J. Physiol. (Lond.), 1940, 97, 453–470.Google Scholar
  39. GUHL, A. M. Gonadal Hormones and Social Behavior in Infra-human Vertebrates. In W. C. Young and G. W. Corner (Eds.) Sex and Internal Secretions. Baltimore: Williams and Wilkins, 1961, v. 2, Pp. 1240–1267.Google Scholar
  40. HALBERG, F., JACOBSON, E., WADSWORTH, G., & BITTNER, J. J. Audiogenic abnormality spectra, twenty-four hour periodicity, and lighting. Science, 1958, 128, 657–658.PubMedCrossRefGoogle Scholar
  41. HENRY, J. P., MEEHAN, J. P., & STEPHENS, P. M. The use of psychosocial stimuli to induce prolonged systolic hypertension in mice. Psychosom. Med., 1967, 29, 408–432.PubMedGoogle Scholar
  42. HILLARP, N.-A., FUXE, K., & DAHLSTROM, A. Demonstration and mapping of central neurons containing dopamine, nor-adrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol. Rev., 1966, 18, 727–742.PubMedGoogle Scholar
  43. HIMWICH, H. E., KETY, S. S., & SMYTHIES, J. R. (Eds.) Amines and Schizophrenia. New York: Pergamon Press, 1967.Google Scholar
  44. IVERSEN, L. L. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: Cambridge University Press, 1967.Google Scholar
  45. KAPELLER, K., & MAYOR, D. The accumulation of noradrenaline in constructed sympathetic nerves as studied by fluorescence and electron microscopy. Proc. Royal Soc., 1967, 167, 282–292.CrossRefGoogle Scholar
  46. KARCZMAR, A. G., & SCUDDER, C. L. Behavioral responses to drugs and brain catecholamine levels in mice of different strains and genera. Fed. Proc., 1967, 26, 1186–1191.PubMedGoogle Scholar
  47. KARLI, P. Rat-mouse interspecific aggressive behavior and its manipulation by brain ablations and by brain stimulation. In S. Garattini and E. B. Sigg (Eds.) Biology of Aggressive Behavior. Amsterdam: Excerpta Medica Foundation, 1969.Google Scholar
  48. KERKUT, G. A. Transport of glutamate to nerve terminals. Neurosci. Res. Prog. Bull., 1967, 5, 322–325.Google Scholar
  49. KETY, S. S., JAVOY, F., THIERRY, A.-M., & GLOWINSKI, J. A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat. Proc. Nat. Acad. Sci., 1967, 58, 1249–1254.PubMedCrossRefGoogle Scholar
  50. KIMBRELL, G. M. A preliminary analysis of the agonistic behavior patterns shown by three strains of mice, Mus museulus, in the footshock situation. Ph.D. Dissertation, Department of Psychology, University of Tennessee, Knoxville, 1968.Google Scholar
  51. KING, J. T., CHIUNG PUH LEE, Y., & VISSCHER, M. B. Single versus multiple cage occupance and convulsive frequency in C3H mice. Proc. Soc. Exp. Biol. Med., 1955, 88, 661–663.PubMedGoogle Scholar
  52. KRECH, D., ROSENZWEIG, M. R., & BENNETT, E. L. Environmental impoverishment, social isolation and changes in brain chemistry and anatomy. Physiol. Behay., 1966, 1, 99–104.CrossRefGoogle Scholar
  53. LADURON, P., & BELPAIRE, F. Transport of noradrenaline and dopamine-beta-hydroxylase in sympathetic nerves. Life Sci., 1968, 7, 1–7.PubMedCrossRefGoogle Scholar
  54. LAGERSPETZ, K. Y. H., TIRRI, R., & LAGERSPETZ, K. M. J. Neurochemical and endocrinological studies of mice selectively bred for aggressiveness. Rep. Inst. Psychol. (Turku), 1967, 29, 1–5.Google Scholar
  55. LEAF, R. C., LERNER, L., & HOROVITZ, Z. P. The role of the amygdala in the pharmacological and endocrinological manipulation of aggression. In S. Garattini and E. B. Sigg (Eds.) The Biology of Aggressive Behavior. Amsterdam: Excerpta Medica Foundation, 1969.Google Scholar
  56. LEHNINGER, A. L. Cell organelles: the mitochondrion. In G. C. Quarton, T. Melnechuk, and F. O. Schmitt (Eds.) The Neurosciences. New York: Rockefeller University Press, 1967, Pp. 91–100.Google Scholar
  57. MAAS, J. W. Neurochemical differences between two strains of mice. Science, 1962, 137, 621–622.PubMedCrossRefGoogle Scholar
  58. MAGOUN, H. W. The Waking Brain. Springfield: Charles C. Thomas, 1963.Google Scholar
  59. MARCUCCI, R., MUSSINI, E., VALZELLI, L., & GARATTINI, S. Decrease in N-acetyl-L-aspartic acid in brain of mice. J. Neurochem., 1968, 15, 53–54.PubMedCrossRefGoogle Scholar
  60. MAYNERT, E. W., & LEVI, R. Stress-induced release of brain norepinephrine and its inhibition by drugs. J. Pharmacol. Exptl. Therap., 1964, 143, 90–95.Google Scholar
  61. MOORE, K. E., & RECH, R. H. Antagonism by monoamine oxidase inhibitors of alpha-methyltyrosine-induced catecholamine depletion and behavioral depression. J. Pharmacol. Exptl. Therap., 1967, 156, 70–75.Google Scholar
  62. NIELSON, H. C., & FLEMING, R. M. Effects of electroconvulsive shock and prior stress on brain amine levels. Exptl. Neurol., 1968, 20, 21–30.CrossRefGoogle Scholar
  63. NOVICK, W. J. Effect of oxygen tension on monoamine oxidase activity. Biochem. Pharmacol., 1966, 15, 1009–1012.PubMedCrossRefGoogle Scholar
  64. PIRCH, J. H., & RECH, R. H. Effect of alpha-methyltyrosine on the elactrocorticogram of unrestrained rats. Internat. J. Neuropharmacol., 1968a, 4, 315–324.CrossRefGoogle Scholar
  65. PIRCH, J. H., & RECH, R. H. Effect of isolation on alphamethyltyrosine-induced behavioral depression. Life Sci., 1968b, 7, 173–182.PubMedCrossRefGoogle Scholar
  66. RAPP, J. P., & CHRISTIAN, J. J. Splenic extramedullary hematopoiesis in grouped male mice. Proc. Soc. Exp. Biol. Med., 1963, 114, 26–28.PubMedGoogle Scholar
  67. REIS, D. J., & GUNNE, L.-M. Brain catecholamines: relation to the defense reaction evoked by amygdaloid stimulation in cat. Science, 1965, 149, 450–451.PubMedCrossRefGoogle Scholar
  68. REIS, D. J., MIURA, M., WEINBREN, M., & GUNNE, L.-M. Brain catecholamines: relation to defense reaction evoked by acute brainstem transection in cat. Science, 1967, 156, 1768–1770.PubMedCrossRefGoogle Scholar
  69. SCHEVING, L. E., HARRISON, W. H., GORDON, P., & PAULY, J. E. Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am. J. Physiol., 1968a, 214, 166–173.PubMedGoogle Scholar
  70. SCHEVING, L. E., HARRISON, W. H., & PAULY, J. E. Daily fluctuation (circadian) in levels of epinephrine in the rat suprarenal gland. Am. J. Physiol., 1968b, 215, 799–802.PubMedGoogle Scholar
  71. SCHILDKRAUT, J. J., & KETY, S. S. Biogenic amines and emotion. Science, 1967, 156, 21–30.PubMedCrossRefGoogle Scholar
  72. SCUDDER, C. L., KARCZMAR, A. G., EVERETT, G. M., GIBSON, J. E., & RIFKIN, M. Brain catecholamines and serotonin levels in various strains and genera of mice and a possible interpretation for the correlations of amine levels with electroshock latency and behavior. Internat. J. Neuropharmacol., 1966, 5, 343–351.CrossRefGoogle Scholar
  73. SHEARD, M. H. The effects of amphetamine on behavior in the cat. Brain Res., 1967, 5, 330–338.CrossRefGoogle Scholar
  74. SPECTOR, S., GORDON, R., SJOERDSMA, A., & UDENFRIEND, S. End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Mol. Pharmacol., 1967, 3, 549–555.PubMedGoogle Scholar
  75. SUDAK, H. W., & MAAS, J. W. Behavioral-neurochemical correlation in reactive and nonreactive strains of rats. Science, 1964, 146, 418–420.PubMedCrossRefGoogle Scholar
  76. VALZELLI, L. Drugs and aggressiveness. In S. Garattini and P. A. Shore (Eds.) Advances in Pharmacology. New York: Academic Press, 1967, v. 5, Pp. 79–108.Google Scholar
  77. VALZELLI, L. Aggressive behavior induced by isolation. In S. Garattini and E. B. Sigg (Eds.) Biology of Aggressive Behavior. Amsterdam: Excerpta Medica Foundation, 1969.Google Scholar
  78. VALZELLI, L., & GARATTINI, S. Behavioral changes and 5-HT turnover in animals. In S. Garattini and P. A. Shore (Eds.) Advances in Pharmacology. New York: Academic Press, 1968, v. 6/B, Pp. 249–260.Google Scholar
  79. VOGT, M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.), 1954, 123, 451–481.Google Scholar
  80. WEISSMAN, A., KOE, K. B., & TENEN, S. S. Anti-amphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. Exptl. Therap., 1966, 151, 339–352.Google Scholar
  81. WELCH, B. L. Psychophysiological response to the mean level of environmental stimulation: a theory of environmental integration. In D. McK. Rioch (Ed.) Symposium on the Medical Aspects of Stress in the Military Climate. Washington: U. S. Gov. Printing Office, 1965, Pp. 39–96.Google Scholar
  82. WELCH, B. L. Aggression and Defense: Neural Mechanisms and Social Patterns. In C. D. Clemente and D. B. Lindsley (Eds.) Brain Function. Los Angeles: University of California Press, 1967, v. 5, Pp. 150–170.Google Scholar
  83. WELCH, B. L., & WELCH, A. S. Graded effect of social stimulation upon d-amphetamine toxicity, aggressiveness and heart and adrenal weight. J. Pharmacol. Exptl. Therap., 1966, 151, 331–338.Google Scholar
  84. WELCH, B. L., & WELCH, A. S. Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability. Nature, 1968a, 218, 575–577.PubMedCrossRefGoogle Scholar
  85. WELCH, B. L., & WELCH, A. S. Evidence and a model for the rapid control of biogenic amine neurotransmitters by stimulus modulation of monamine oxidase. Fed. Proc. (abs), 1968b, 27, 711.Google Scholar
  86. WELCH, B. L., & WELCH, A. S. Greater lowering of brain and adrenal catecholamines in group-housed than in individually-housed mice administered DL-alpha-methyltyrosine. J. Pharm. Pharmacol., 1968c, 20, 244–246.PubMedCrossRefGoogle Scholar
  87. WELCH, B. L., & WELCH, A. S. Rapid modification of isolation-induced aggressive behavior and elevation of brain catecholamines and serotonin by the quick-acting mon-amine oxidase inhibitor pargyline. Comm. Behay. Biol., 1968d, 1, 347–351.Google Scholar
  88. WELCH, A. S., & WELCH, B. L. Effect of stress and parachlorophenylalanine upon brain serotonin, 5-hydroxyindoleacetic acid and catecholamines in grouped and isolated mice. Biochem. Pharmacol., 1968e, 17, 699–708.PubMedCrossRefGoogle Scholar
  89. WELCH, A. S., & WELCH, B. L. Failure of natural stimuli to accelerate brain catecholamine depletion after biosynthesis inhibition with alpha-methyltyrosine. Brain Res., 1968f, 9, 402–405.PubMedCrossRefGoogle Scholar
  90. WELCH, A. S., & WELCH, B. L. Reduction of norepinephrine in the lower brainstem by psychological stimulus. Proc. Nat. Acad. Sci., 1968g, 60, 478–481.PubMedCrossRefGoogle Scholar
  91. WELCH, B. L., & WELCH, A. S. Aggression and the biogenic amines. In S. Garattini and E. B. Sigg (Eds.) Biology of Aggressive Behavior. Amsterdam: Excerpta Medica Foundation, 1969.Google Scholar
  92. WELCH, B. L., AND WELCH, A. S. Brain NE and DA: rapid elevation and subsequent stimulus-facilitated depletion by d-amphetamine. Fed. Proc. (abs), 1969, 28, 796.Google Scholar
  93. WERDINIUS, B. Effect of probenecid on the levels of monoamine metabolites in the rat brain. Acta Pharmacol. Toxicol., 1967, 25, 18–23.CrossRefGoogle Scholar
  94. WISE, D. C., & STEIN, L. Facilitation of brain stimulation by central administration of norepinephrine. Science, 1969, 163, 299–301.PubMedCrossRefGoogle Scholar
  95. WOOLLEY, W. D. The Biochemical Basis of Psychosis. New York: John Wiley and Sons, 1962a.Google Scholar
  96. WOOLLEY, D. E., & TIMIRAS, P. S. Estrous and circadian periodicity and electroshock convulsions in rats. Am. J. Physiol., 1962b, 202, 379–382.PubMedGoogle Scholar
  97. YEN, C. Y., STAGNER, R. L., & MILLMAN, N. Ataractic suppression of isolation-induced aggressive behavior. Arch. Internat. Pharmacodyn., 1959, 123, 179–185.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Annemarie S. Welch
    • 1
  • Bruce L. Welch
    • 1
  1. 1.Maryland Psychiatric Research CenterBaltimoreUSA

Personalised recommendations