Effects of Aggression and Defeat on Brain Macromolecules

  • Basil E. Eleftheriou


Aggression in animals can be induced and/or modified by diverse methods such as simple isolation-frustration (Elul, 1966; Yeu, Stanger & Millman, 1959), frontal lobectomy (Karli, 1955), destruction of olfactory bulbs (Vergnes & Karli, 1965), olfactory lesions and destruction of prepyriform cortex (Karli & Vergnes, 1963), lesions of septal nuclei which produce septal irritability (Brady & Nauta, 1953), electric foot shock (Miller, 1948; O’Kelly & Steckle, 1938; Ulrich, Hutchinson & Azrin, 1965), and by several pharmacologic agents (Brown, 1960; Everett, 1961; Reinhard, Plekss & Scudi, 1960).


Fatigue Estrogen Retina Norepinephrine Epinephrine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALBERT, D. J. Memory in mammals: evidence for a system involving nuclear ribonucleic acid. Neuropsychologia, 1966, 4, 79–92.CrossRefGoogle Scholar
  2. ATTARDI, G. Quantitative behaviour of cytoplasmic RNA in rat Purkinje cells following prolonged physiological stimulation. Exp. Cell Res., Suppl., 1957, 4, 25–53.Google Scholar
  3. BARANOV, M. N., & PEVZNER, L. Z. Microchemical and microspectrophotometric studies on the intralaminar distri-bution of nucleic acids in the brain cortex under various experimental conditions. J. Neurochem., 1963, 10, 279–283.PubMedCrossRefGoogle Scholar
  4. BRADY, Y. V., & NAUTA, W. S. H. Subcortical mechanisms in emotional behavior affective changes following septal forebrain lesions in the albino rat. J. Comp. Physiol. Psychol., 1953, 46, 239–244.Google Scholar
  5. BRATGAARD, S. O. RNA increase in ganglion cells of retina after stimulation by light. Acta Radiol. Suppl., 1952, 96, 80–101.Google Scholar
  6. BRIGGS, M. H., & KITTO, G. B. The molecular basis of memory and learning. Psychol. Rev., 1962, 69–537–541.Google Scholar
  7. BRONSON, F. H., & ELEFTHERIOU, B. E. Relative effects of fighting on bound and unbound corticosterone in mice. Proc. Soc. Exp. Biol. Med., 1965a, 118, 146–149.PubMedGoogle Scholar
  8. BRONSON, F. H., & ELEFTHERIOU, B. E. Adrenal responses to fighting in mice: separation of physical and psychological causes. Science, 1965b, 147, 627–628.PubMedCrossRefGoogle Scholar
  9. BROWN, B. B. CNS-drug action and interaction in mice. Arch. Internat. Pharmacodynamie, 1960, 128, 391–395.Google Scholar
  10. CORNING, W. C., & JOHN, E. R. Effect of ribonuclease on retention of response in regenerated planarians. Science, 1961, 134, 1363–1365.PubMedCrossRefGoogle Scholar
  11. EIDUSON, S., GELLER, E., & BECKWITH, W. Some biochemical correlates of imprinting. Fed. Proc., 1961, 20, 345.Google Scholar
  12. ELEFTHERIOU, B. E., & BOEHLKE, K. W. Brain monoamine oxidase in mice after exposure to aggression and defeat. Science, 1967, 155, 1693–1694.PubMedCrossRefGoogle Scholar
  13. ELEFTHERIOU, B. E., & CHURCH, R. L. Brain levels of serotonin and norepinephrine in mice after exposure to aggression and defeat. Physiol. Behay., 1968, 3, 977–980.CrossRefGoogle Scholar
  14. ELEFTHERIOU, B. E., & CHURCH, R. L. Brain 5-hydroxytryptophan decarboxylase in mice after exposure to aggression and defeat. Physiol. Behay. 1968, 3, 323–325.CrossRefGoogle Scholar
  15. ELUL, R. Dependence of synaptic transmission on protein metabolism of nerve cells - a possible electrokinetic mechanism of learning. Nature, 1966, 210, 1127.PubMedCrossRefGoogle Scholar
  16. EVERETT, G. M. Some electrophysiological and biochemical correlation of motor activity and aggressive behavior. Neuropharmacology, Vol. 2, Amsterdam: Elsevier Press, 1961, Pp. 479.Google Scholar
  17. GARATTINI, S., GIACALONE, E., & VALZELLI, L. Isolation, aggressiveness and brain serotonin turnover. J. Pharm. Pharmacol., 1967, 19, 338–339.PubMedCrossRefGoogle Scholar
  18. HYDEN, H., & EGYHAZI, E. Nuclear RNA changes of nerve cells during a learning experiment in rats. Proc. Nat. Sci., 1962, 48, 1366–1373.CrossRefGoogle Scholar
  19. HYDEN, H., & EGYHAZI, E. Glial RNA changes during a learning experiment with rats. Proc. Nat. Acad. Sei., 1963, 49, 618–624.CrossRefGoogle Scholar
  20. HYDEN, H., & EGYHAZI, E. Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness. Proc. Nat. Acad. Sci., 1964, 52, 1030–1035.PubMedCrossRefGoogle Scholar
  21. HYDEN, H., & LANGE, P. W. A differentiation in RNA response in neurons early and late during learning. Proc. Nat. Acad. Sci., 1967, 53, 946–952.CrossRefGoogle Scholar
  22. JOHN, E. ROY. Mechanisms of Memory. New York: Academic Press, 1967.Google Scholar
  23. KARLI, O. Effects de lesions experimentales des noyau amygdaliens et du lobe frontal sur le comportement d’aggression du rat vis-a-vis de la souris. Comp..end. Soc. Biol. (Paris), 1955, 149, 2227–2231.Google Scholar
  24. KARLI, P., & VERGNES, M. Declenchement du comportement d’aggression interspecifique rat-souris par des lesions experimentales de la bandalette olfactive laterale et du cortex praepyriform. Comp. Rend. Soc. Biol. (Paris), 1963, 157, 372–375.Google Scholar
  25. KATZ, S., & COMB, G. A new method for the determination of the base composition of ribonucleic acid. J. Biol. Chem., 1963, 238, 3065–3067.PubMedGoogle Scholar
  26. KIRBY, K. A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem. J., 1965, 64, 405–408.Google Scholar
  27. KRAL, V. A., & SVED, S. Midwest Psychol. Assoc. Meet. Symp. Nucleic Acids Behavior, 1963.Google Scholar
  28. LEDIG, M., FEIGENBAUM, H., & MANDELL, P. Sur la nature des phosphopeptides qui contaminent la fraction ribonucleotidique an cours du dosage d’acides nucleiques selon. Bioch. Bioph. Acta, 1963, 72, 332–334.CrossRefGoogle Scholar
  29. LORING, H., CHARGAFF, E., & DAVIDSON, J. The Nucleic Acids. Vol. 1, New York: Academic Press, Inc., 1955, p. 201.Google Scholar
  30. LOWRY, O. H., ROSENBROUGH, N. S., FARR, A., L., & RANDALL, R. J. Measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193, 265–275.PubMedGoogle Scholar
  31. MANDELL, J., & HERSHEY, H. A fractionating column for the analysis of nucleic acids. Anal. Biochem., 1960, 1, 66–77.PubMedCrossRefGoogle Scholar
  32. MACLEOD, R. M., KING, C. E., & HOLLANDER, V. P. Effect of corticosteroids on ribonuclease and nucleic acid con-tent in lymphosarcoma P1798. Cancer Res., 1963, 23, 1045–1050.PubMedGoogle Scholar
  33. MIHAILOVIC, L. J., JANKOVIC, B. D., PETROVIC, M., & ISAKOVIC, K. Effect of electroshock upon nucleic acid concentrations in various parts of cat brain. Experientia, 1958, 14, 144–146.PubMedCrossRefGoogle Scholar
  34. MILLER, W. E. Theory and experiment relating psychoanalytic displacement to stimulus-response generalization. J. Abnorm. Psychol., 1948, 43, 155–160.PubMedCrossRefGoogle Scholar
  35. NOACH, E. L., JOOSTING, B. J., & WIJLING, A. Influence of electroshock and phenobarbital on nucleic acid content of rat brain cortex. Acta Physiol. Neerl., 1962, 11, 54–59.Google Scholar
  36. O’KELLY, L. T., & STECKLE, L. C. A note on long-enduring emotional responses in the rat. J. Psychol., 1938, 8, 125–126.Google Scholar
  37. POPA, L., CRUCEANU, A., & LACATUS, V. Some physiochemical properties of mouse brain RNA. Rev. Roum. Biochem., 1967, 4, 137–142.Google Scholar
  38. RASCH, E., SWIFT, H., & CHOW, K. L. Altered structure and composition of retinal cells in dark reared mammals. Exptl. Cell Res., 1961, 25, 348–363.CrossRefGoogle Scholar
  39. REINHARD, J. F., PLEKSS, O. J., & SCUDI, J. V. Some pharmacological actions of amphetamines. Proc. Soc. Exp. Biol. Med., 1960, 104, 480–483.Google Scholar
  40. SANTEEN, R. J., & AGRANOFF, B. W. Studies on the estimation of deoxyribonucleic acid in rat brain. Biochem. Biophys. Acta, 1963, 72, 251–262.Google Scholar
  41. SCHMIDT, G., & THANNHAUSER, S. J. A method for the determination of desoxyribonucleic acid, nucleic acids and phosphoproteins in animal tissues. J. Biol. Chem., 1945, 161, 83–89.PubMedGoogle Scholar
  42. SCHNEIDER, W. C. Determination of Nucleic Acids in Tissues by Pentose Analysis. In S. P. Colowick and N. O. Kalpan (Eds.) Methods in Enzymology, Vol. 3. New York: Academic Press, 1957, Pp. 680–684.CrossRefGoogle Scholar
  43. SCOTT, J. P. Incomplete adjustment caused by frustration of untrained fighting mice. J. Comp. Psychol., 1946, 39, 379–390.CrossRefGoogle Scholar
  44. SHTARK, M. B. Participation of nucleic acids metabolism in formation of electrical properties of apical dendrites of cerebral cortex. Bull. Exptl. Biol. USSR, 1965, 59, 230–296.Google Scholar
  45. SMIRNOV, A. A. Dokl. Akad. Nauk. SSSR. 105, 185, 195. Cited by PALLADIN, A. V. In Problems of the Biochemistry of the Central Nervous System. New York: Macmillan (Pergamon), 1964, Pp. 311–312.Google Scholar
  46. SUEOKA, N., & CHENG, T. Fractionation of nucleic acids with the methylated albumin column. J. Mol. Biol., 4, 16 1172.Google Scholar
  47. TALWAR, G. P., SADASIVUDU, B., & CHITRE, V. S. Changes in pentose-nucleic acid content of sub-cellular fractions of the brain of the rat during “metrazol” convulsions. Nature, 1961, 191, 1007–1008.PubMedCrossRefGoogle Scholar
  48. ULRICH, R. E., HUTCHINSON, E. R., & AZRIN, N. H. Pain elic- ited aggression. The Psychol. Rec., 1965, 15, 111.Google Scholar
  49. VERGNES, M., & KARLI, P. Déclenchement du comportement d’aggression interspecifique rat-souris par ablation bilatérale des bulbes olfactives. Action de l’hydra-zine sur cette aggressivité provoquée. Comp. Rend. Soc. Biol. (Paris), 1965, 157, 1061–1066.Google Scholar
  50. VLADIMIROV, G. E., BARANOV, M. N., PREVZNER, L. Z., & TSYNYAN, W. On differences in metabolism existing in some areas and layers of brain cortex. In S. S. Kety and J. Elkes, Regional Neurochemistry. Proc. 4th Internat. Neurochem. Symp. Oxford: Pergamon Press, 1961.Google Scholar
  51. WINER, B. J. Statistical Principles in Experimental Design. New York: McGraw-Hill, 1962. P. 75.CrossRefGoogle Scholar
  52. YEU, C. Y., STANGER, R. L., & MILLMAN, N. Ataractic suppression of isolation-induced aggressive behavior. Arch. Internat. Pharmacodynamie, 1959, 123, 179–182.Google Scholar
  53. ZEMP, J. W., WILSON, J. E., & GLASSMAN, E. Brain function and macromolecules II. Site of increased labelling of RNA in brains of mice during a short term training experience. Proc. Nat. Acad. Sci. U. S., 1967, 58, 1120–1125.CrossRefGoogle Scholar
  54. ZIMMERMAN, S. B., & SANDEEN, G. A sensitive assay for pancreatic ribonuclease. Anal. Biochem., 1965, 10, 444–449.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Basil E. Eleftheriou
    • 1
  1. 1.The Jackson LaboratoryBar HarborUSA

Personalised recommendations