Characterization of Polymer Glasses by Sintering Techniques

  • Gail F. Steiner
  • John A. Manson
  • Charles R. Nippert
Conference paper


The sintering of a metal, ceramic, or polymer is a useful process for fabrication. Under the influence of surface forces, alone or in combination with externally applied forces, an aggregation of particles can be densified without forming a melt. The kinetics of growth of interfaces between particles at a given temperature must reflect parameters characteristic of surface energy, material transport, and geometry. For a given transport mechanism, such as viscous flow, and a given geometry, it should be possible to characterize the parameters mentioned.


Polymethyl Methacrylate Viscous Flow Retardation Time Glassy Polymer Sinter Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuczynski, G. C., Hooton, N. A., and C. F. Gibbon, “Sintering and Related Phenomena,” Gordon and Breach, New York (1967).Google Scholar
  2. 2.
    Frenkel, J., J. Phys. (U.S.S.R.) 9, 385 (1949).Google Scholar
  3. 3.
    Kuczynski, G. C., Trans. A.I.M.E., 185, 169 (1949). 191Google Scholar
  4. 4.
    Kuczynski, G. C., J. Appl. Phys., 22, 632 (1950).CrossRefGoogle Scholar
  5. 5.
    Kuczynski, G. C., J. Appl. Phys., 20: 12, 1160 (1949).CrossRefGoogle Scholar
  6. 6.
    Herring, C. J., J. Appl. Phys., 22, 301 (1950).CrossRefGoogle Scholar
  7. 7.
    Kuczynski, G. C., and Zaplatynskyi, J. Am. Ceram. Soc., 39: 10, 349 (1956).CrossRefGoogle Scholar
  8. 8.
    Kingery, W. D., and M. Berg, J.Appl. Phys. 26, 1205 (1955).CrossRefGoogle Scholar
  9. 9.
    Oel, H. J., Trans. VIIth International Ceramics Congress, London (1960).Google Scholar
  10. 10.
    Henrichsen, I. B., and Cutler, I. B, Proc. Br. Ceramic Soc., 12, 155 (1969).Google Scholar
  11. 11.
    Neuville, B., “Studying of Sintering of Pnzymethyl Methacrylate,” M. S. Thesis, U. of Notre Dame (1958).Google Scholar
  12. 12.
    Lontz, J.F., in “Fundamental Phenomena in the Materials Sciences,” Vol. 1, ed. by Bonis and Hausner, Plenum, (1964).Google Scholar
  13. 13.
    Nielsen, L. E., Mechanical Properties of Polymers, Reinhold Publishing, New York (1962).Google Scholar
  14. 14.
    Dillon, R. E., Matheson, L. A., and Bradford, E. B., J. Colloid Sci., 6: 108 (1951).CrossRefGoogle Scholar
  15. 15.
    Vanderhoff, J. W., Tarkowski, J. W., Jenkins, M. C, and Bradford, E. B., J. Macromol. Chem. 1: 361 (1966).Google Scholar
  16. 16.
    Anand, J. N., and Karam, H. J., J. Adhesion 1: 16 (1969).CrossRefGoogle Scholar
  17. 17.
    Schonhorn, H., Frisch, H. L., and T. K. Kwei, J. Appl. Phys., 37: 13, 4967 (1966).CrossRefGoogle Scholar
  18. 18.
    Van Oene, H., Chang, Y.F., Newman, S., J.Adhesion 1: 54 (1969).CrossRefGoogle Scholar
  19. 19.
    Roe, R. J., J. Colloid & Interfac. Sci., (1969).Google Scholar
  20. 20.
    Zisman, W.A., Advances in Chem. Series, 43, 1–48 (1964).Google Scholar
  21. 21.
    Ferry, J. D., “viscoelastic Properties of Polymers,” John Wiley, Wiley, New York (1961).Google Scholar
  22. 22.
    Steiner, G.R., and Manson, J.A., paper presented, 3d Mid. Atlantic Reg. Mtg., ACS, Philadelphia, Feb. 2, 1968.Google Scholar
  23. 23.
    Steiner, G.R., Nippert, C., and Manson, J.A., paper presented, 4th Mid.Atlantic Reg. Mtg., ACS, Wash., Feb. 17, 1969.Google Scholar
  24. 24.
    Steiner, G.R., Thesis toward Ph.D., Dept. of Chem. Eng., Lehigh Univ., October, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Gail F. Steiner
    • 1
  • John A. Manson
    • 1
  • Charles R. Nippert
    • 1
  1. 1.Materials Res. CenterLehigh Univ.BethlehemUSA

Personalised recommendations