Advertisement

Transitions and Relaxations in Aromatic Polymers

  • Wolfgang Wrasidlo

Abstract

Completely aromatic polymers offer a unique opportunity for studying molecular motions responsible for transition and relaxation effects. In linear aliphatic polymers relaxation processes are believed to originate in rotations, either of whole chains, chain segments or individual moieties within a molecular unit (1,2). In fully aromatic polymers rotational mobility is greatly restricted due to resonance and steric effects, especially high barriers to rotation arising from ortho substituents. Consequently we expect primary motions which affect the glass or melt transitions to be manifested in other than rotational interactions.

Keywords

Heat Capacity Glass Transition Dielectric Relaxation Linear Thermal Expansion Helium Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Boyer, J. Poly. Sci., C-14, 3 (1966).Google Scholar
  2. 2.
    D. U. McCall, National Bureau of Standards Special Publ. 301, 475 (1969).Google Scholar
  3. 3.
    E. Butta, S. DePetris, M. Pasquini, J. Appl. Poly. Sci., 13, 1073 (1969).Google Scholar
  4. 4.
    R. Matles and E. G. Rochow, J.Poly. Sci., A-4, 375 (1966).Google Scholar
  5. 5.
    S. L. Copper, A. D. Mair, and A. V. Tobolsky, Textile Res. J., 1110 (1965).Google Scholar
  6. 6.
    M. Baccaredda, E. Butta, V. Frosini, and S. DePetris, Mat. Sci. Eng., 3, 157 (1968).CrossRefGoogle Scholar
  7. 7.
    P. M. Hergenrother and H. H. Levine, J. Poly. Sci., A-l, 5, 1453 (1967).CrossRefGoogle Scholar
  8. 8.
    W. Wrasidlo and J. M. Augl, J. Poly. Sci., A-l, 7, 3393 (1969).CrossRefGoogle Scholar
  9. 9.
    W. Wrasidlo and J. M. Augl, J. Poly. Sci., B-8, 69 (1970).Google Scholar
  10. 10.
    W. Wrasidlo and J. M. Augl, Macromolecules, 3, 544 (1970).CrossRefGoogle Scholar
  11. 11.
    P. M. Hergenrother and D. E. Kiyohara, Macromolecules, 3, 387 (1970).CrossRefGoogle Scholar
  12. 12.
    B. Wunderlich, in “Differential Thermal Analysis, Part IV,” Chap. 17, A. Weissberger, ed., to be published (1971).Google Scholar
  13. 13.
    D. C. Ginnings and G. T. Furukawa, J. Am. Chem. Soc., 75, 522 (1963).CrossRefGoogle Scholar
  14. 14.
    M. Takayanagi and M. Yoshino, J. Japan Soc. Text. Mat., 8, 308 (1959).Google Scholar
  15. 15.
    J. K. Gillham, Poly. Eng. and Sci., 7 (4), 225, (1967).CrossRefGoogle Scholar
  16. 16.
    Am. Institute of Physics Handbook, 2nd ed., McGraw-Hill, pp. 4-66 (1963).Google Scholar
  17. 17.
    J. M. O’Reilly and F.E. Karasz, J.Poly.Sci., 14, 54, (1966)Google Scholar
  18. 18.
    B. Wunderlich, J. Phys. Chem., 64, 1052 (1960).CrossRefGoogle Scholar
  19. 19.
    J. Frenkel, “Kinetic Theory of Liquids,” Oxford Univ. Press London, 1946.Google Scholar
  20. 20.
    H. Eyring, J. Chem. Phys., 4, 283 (1936).CrossRefGoogle Scholar
  21. 21.
    B. Wunderlich, Adv. Poly. Sci., 7(2), 282 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Wolfgang Wrasidlo
    • 1
  1. 1.Materials Sciences Lab.Boeing Scientific Research LaboratoriesSeattleUSA

Personalised recommendations