Pulse Laser Holographic Interferometry

  • F. C. Jahoda


In the expectation that other speakers at this symposium will have thoroughly discussed the physical information that refractive measurements provide in the study of gas dynamics, the emphasis in the present contribution is entirely on the holographic techniques by which refractivity can be measured. The interpretation of holographically produced interference fringe patterns is, generally, equivalent to that of the fringe patterns produced by a conventional interferometer, although some exceptions are noted later. The primary justification for these techniques is the greater experimental simplicity and/or flexibility thereby achieved over older methods.


Fringe Pattern Reference Beam Photographic Plate Ruby Laser Holographic Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. W. Stroke, An Introduction to Coherent Optics and Holography, Academic Press, Inc., New York and London (2nd edition, 1969).Google Scholar
  2. J. B. De Velis, and G. O. Reynolds, Theory and Applications of Holography, Addison-Wesley (1967).Google Scholar
  3. H. Kiemle and D. Ross, Einführung in die Technik der Holographie, Akademische Verlagsgesellschaft (1969); In German.Google Scholar
  4. M. Francon, Holographie, Masson and Cie (1969). In French.Google Scholar
  5. Yu. I. Ostrovskii, Holography, Leningrad (1970). In Russian.Google Scholar
  6. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).ADSCrossRefGoogle Scholar
  7. L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, J. Appl. Phys. 37, 642 (1966).ADSCrossRefGoogle Scholar
  8. F. C. Jahoda, R. A. Jeffries, G. A. Sawyer, Appl. Optics 6, 1407 (1967)ADSCrossRefGoogle Scholar
  9. T. D. Butler, I. Henins, F. C. Jahoda, J. Marshall, and R. L. Morse, Phys. Fluids 12, 1903 (1969).ADSCrossRefGoogle Scholar
  10. I. I. Komisarova, G. V. Ostrovskaya, L. L. Shapiro, and A. N. Zaidel, Phys. Letters 29A, 262 (1969) andADSGoogle Scholar
  11. R. A. Jeffries, Phys. Fluids, 13, 210 (1970).ADSCrossRefGoogle Scholar
  12. B. P. Hildebrand and K. A. Haines, J. Opt. Soc. Am. 57, 155 (1967).ADSCrossRefGoogle Scholar
  13. J. J. Amodei and R. S. Mezrich, Appl. Phys. Letters 15, 45 (1969).ADSCrossRefGoogle Scholar
  14. T. Izawa and M. Kamiyama, Appl. Phys. Letters, 15, 201 (1969).ADSCrossRefGoogle Scholar
  15. W. A. Simpson and W. E. Deeds, Appl. Optics 9, 499 (1970).ADSCrossRefGoogle Scholar
  16. A. Kakos, G. V. Ostrovskaia, Yu. I. Ostrovsky, and A. N. Zaidel, Phys. Letters, 23, 81 (1966) andADSCrossRefGoogle Scholar
  17. J. C. Buges, C. R. Acad. Sci. Paris, B268, 1624 (1969),Google Scholar
  18. F. C. Jahoda, Appl. Phys. Letters, 14, 341 (1969).ADSCrossRefGoogle Scholar
  19. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault and F. J. McClung, Appl. Phys. Letters 14, 159 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • F. C. Jahoda
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations