Interferometric Gas Diagnostics by the Hook Method

  • Martin C. E. Huber

Abstract

Refractive index measurements have long been a well established tool for investigating aerodynamic flow patterns where number densities were determined from interferograms taken with a light source of moderate spectral bandwidth. However, the number density so derived gives no indication of the composition nor thermodynamic state of the gas under investigation; rather, its properties and composition have to be assumed.

Keywords

Combustion Nickel Furnace Magnesium Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamichel, C., Assous, R., and Legay, F. 1963, Appl. Optics, 2, 495.ADSCrossRefGoogle Scholar
  2. Alpher, R.A. and White, D.R. 1965, in Plasma Diagnostic Techniques, R.H. Huddlestone and S.L. Leonard, eds. (Academic Press, New York and London), p. 431.Google Scholar
  3. Anketell, J. and Pery-Thorne, A. 1967, Proc. Roy. Soc. A, 301, 343.ADSCrossRefGoogle Scholar
  4. Antropov, E.T., Sobolev, N.N., and Cheremisinov, V.P. 1964, Optics and Spectrosc, 16, 115.ADSGoogle Scholar
  5. Arcas, P. and Hochard-Demolliêre, L. 1967, C.R. (Acad. Sci., Paris) Series B, 264, 1258.Google Scholar
  6. Ascoli-Bartoli, U. 1970, in Physios of Hot Plasmas, B.J. Rye and J.C. Taylor, eds. (Plenum Press, New York, and Oliver & Boyd, Edinburgh), p. 404.Google Scholar
  7. Bershader, D. 1971, in Modern Optical Methods in Gas Dynamic Research, D.S. Dosanjh, ed. (Plenum Press, New York).Google Scholar
  8. Bethke, G.W. 1959, J. Chem. Phys., 31, 662.ADSCrossRefGoogle Scholar
  9. Borkenhagen, W.H., Ribe, F.L. and Sawyer, G.A. 1963, Los Alamos Sci. Lab., Univ. Calif., Rept. LA-2940.Google Scholar
  10. Bradley, D.J., Durrant, A.J.F., Gale, G.M., Moore, M., and Smith, P.D. 1968, IEEE J. Quantum Electr., QE-4, 707.ADSCrossRefGoogle Scholar
  11. Bradley, D.J., Gale, G.M., and Smith, P.D. 1970, Nature, 225, 719.ADSCrossRefGoogle Scholar
  12. Brillouin, L. 1960, Wave Propagation and Group Velocity (Academic Press, New York and London), p. 121.MATHGoogle Scholar
  13. Brooks, R.G., Probert, S.D., and Maxwell, J. 1968, Meas. and Control, 1, T9.Google Scholar
  14. Cary, B. and Nickels, W. 1963, General Electric, Missile and Space Division, Tech. Inform. Series R63SD82, DDC No. 423565.Google Scholar
  15. Chamberlain, J.E. 1963, Ph.D. thesis, Dept. Phys., Imperial College, London. (For a short description,Google Scholar
  16. see also Pery-Thorne, A., and Chamberlain, J.E. 1963, Proc. Phys. Soc., 82, 133.)ADSCrossRefGoogle Scholar
  17. Chamberlain, J.E. 1967, J. Quant. Spectrosc. Radiative Transfer, 7, 151.ADSCrossRefGoogle Scholar
  18. Cordelle, J., Flamand, J., Pieuchard, G., and Labeyrie, A. 1970, in Optical Instruments and Techniques (Oriel Press, London), p. 117.Google Scholar
  19. Day, R.A. 1967, Scientific Report No. 20, Shock Tube Spectroscopy Laboratory, Harvard College Observatory, Cambridge, Mass. 02138.Google Scholar
  20. El-Wakil, M.M. and Jaeck, C.L. 1964, Am. Soc. Mech. Eng., Trans. Ser. C, J. Heat Transfer, 86, 464.Google Scholar
  21. Forbrich, C. A. 1967, Ph.D. thesis, SU-IPR Rept. No. 191, Inst. Plasma Res., Stanford Univ., Stanford, Calif.Google Scholar
  22. Forbrich, C.A. 1970 (private communication).Google Scholar
  23. Fork, R.L. and Bradley, L.C. 1964, Appl. Optics, 3, 137.ADSCrossRefGoogle Scholar
  24. Gebhart, B. and Knowles, C.P. 1966, Rev. Sci. Instrum., 37, 12.ADSCrossRefGoogle Scholar
  25. Grasdalen, G.L., Huber, M., and Newsom, G.H. 1968, Rev. Sci. Instrum., 37, 886.ADSCrossRefGoogle Scholar
  26. Hall, J.G. 1954, Rept. No. 27, Inst. Aerophys., Univ. Toronto.Google Scholar
  27. Hariharan, P. 1969, Appl. Optics, 8, 1925.ADSCrossRefGoogle Scholar
  28. Huber, M. 1966, J. Opt. Soc. Amer., 56, 1428.Google Scholar
  29. Huber, M. and Tobey, F.L., Jr. 1968, Ap. J., 152, 609.ADSCrossRefGoogle Scholar
  30. Johnstone, R.K.M. and Smith, W. 1965, J. Sci. Instrum., 42, 231.ADSCrossRefGoogle Scholar
  31. Kaspar, J. 1965, Zpráva VZLU, No. 3, 31, Vyzkumny a Zkusebni Letecky Ustav, Prague.Google Scholar
  32. Kopfermann, H. and Ladenburg, R. 1928, Z. Phys., 48, 51.ADSCrossRefGoogle Scholar
  33. Kopfermann, H. and Ladenburg, R.. 1930, Z. Phys., 65, 167.ADSCrossRefGoogle Scholar
  34. Labeyrie, A. and Flamand, J. 1969, Opt. Commun., 1, 5.ADSCrossRefGoogle Scholar
  35. Ladenburg, R. and Bershader, D. 1955, “Interferometry in High Speed Aerodynamics and Jet Propulsion,” in Physical Measurements in Gas Dynamics and Combustion, vol. IX, High Speed Aerodynamics and Jet Propulsion (Princeton, Princeton University Press).Google Scholar
  36. Ladenburg, R. and Kopfermann, H. 1928, Z. Phys., 48, 26ADSCrossRefGoogle Scholar
  37. Ladenburg, R. and Levy, S. 1930, Z. Phys., 65, 189.ADSCrossRefGoogle Scholar
  38. Lee, T.S. and Park, S.D. 1964, Tokyo University, Japan, 7 p. research report (Clearinghouse f. Sci. and Tech. Infor. ace. no. N65–15449).Google Scholar
  39. Marlow, W.C. 1967, Appl. Optics, 6, 1715.ADSCrossRefGoogle Scholar
  40. Meroz, I. 1962, ed., Optical Transition Probabilities, A Collection of Russian Articles, 1924–1960, Israel Program for Sci. Transi., Jerusalem (available from Office of Tech. Services, U.S. Dept. Commerce, Washington, D.C.).Google Scholar
  41. Meroz, I. 1963, ed., Optical Transition Probabilities, A Collection of Russian Articles, 1932–1962, Israel Program for Sci. Transi., Jerusalem (available from Office of Tech. Services, U.S. Dept. Commerce, Washington, D.C.).Google Scholar
  42. Penkin, N.P. 1964, J. Quant. Spectrosc. Radiative Transfer, 4, 41. (Translated by J.L. Tech in Astron. Papers Transi, from the Russian, No. 3, 1964, Smithsonian Ap. Obs., Cambridge, Mass.).CrossRefGoogle Scholar
  43. Penkin, N.P. and Shabanova, L.N. 1965, Optics and Spectrosc, 18, 504.ADSGoogle Scholar
  44. Pery-Thorne, A. and Banfield, F.P. 1970, J. Phys. B (Great Britain), 3, 1011.ADSGoogle Scholar
  45. Peterson, O.G., Tuccio, S.A. and Snavely, B.B. 1970, Appl. Phys. Letters, 17, 245.ADSCrossRefGoogle Scholar
  46. Prokof’ev, V.K. 1924, Trudy Gosudarstvennogo Opt. Inst. (Leningrad), 3, 1; transi, in Meroz 1962, op. cit., p. 1.Google Scholar
  47. Prowse, D.B. 1967a, Appl. Optics, 6, 773.ADSCrossRefGoogle Scholar
  48. Prowse, D.B.. 1967b, Tech. Note 100, Dept. Supply, Austral. Def. Sci. Service, Def. Stand. Lab., Ascot Vale, Victoria.Google Scholar
  49. Rowe, R.L. 1966, Instrum. Soc. Am., Trans. 5, 44.Google Scholar
  50. Rozhdestvenskii, D.S. 1912, Ann. Phys., 39, 307.Google Scholar
  51. Rozhdestvenskii, D.S. 1951, Works on Anomalous Dispersion in Vapors of Metals, S.E. Frish and N.P. Penkin, eds., Akad. Nauk, USSR. (Translated in part by L.G. Robbins, U.S. Army Engineer Research and Development Laboratories, Ft. Belvoir, Va., T-1024, 1961.)Google Scholar
  52. Sawyer, R.A. 1963, Experimental Spectroscopy, 3rd. ed. (Dover Publ., New York).Google Scholar
  53. Shukhtin, A.M. 1965, Optics and Spectrosc, 19, 457.ADSGoogle Scholar
  54. Slavenas, I.-Yu. Yu. 1966, Optics and Spectrosc, 20, 264.ADSGoogle Scholar
  55. Snavely, B.B. 1969, Proc IEEE, 57, 1374.CrossRefGoogle Scholar
  56. Spurk, J. 1971, in Modern Optical Methods in Gas Dynamic Research, D.S. Dosanjh, ed. (Plenum Press, New York).Google Scholar
  57. Stein, A. and Shultz, T. 1965, Appl. Optics, 4, 1510.ADSCrossRefGoogle Scholar
  58. Tanner, L.H. 1968, in Tech. Rept. for the year 1956, Aeronaut. Res. Council (London: Her Majesty’s Stationary Office), p. 595.Google Scholar
  59. Tech, J.L. 1964, Astron. Papers Transi, from the Russian, No. 3, Smithsonian Ap. Obs., Cambridge, Mass.Google Scholar
  60. Tumakaev, G.K. and Lazovskaya, V.R. 1965, Soviet Phys. Tech. Phys., 9, 1449;Google Scholar
  61. see also Dunayev, U.A., Maslennikov, V.G. , Mishin, G.I., Sistchikova, M.P., and Tumakayev, G.K. 1967 in Proa. 7th Intl. Congr. High Speed Photogr. Zurich, Sept. 1965, O. Helwich ed. (O. Helwich, Darmstadt and Wien), p. 588.Google Scholar
  62. Weber, D. and Penner, S.S. 1957, J. Chem. Phys., 26, 860.ADSCrossRefGoogle Scholar
  63. Wheaton, J.E.G. 1964, Appl. Optics, 3 1247.ADSCrossRefGoogle Scholar
  64. Wiese, W.L. 1968, “Atomic and Electron Physics, Atomic Interactions, Part A,” in Methods of Experimental Physics vol. 7, B. Bederson and W.F. Fite, eds., p. 117.Google Scholar
  65. Wiese, W.L., Smith, M.W., and Glennon, B.M. 1966, Atomic Transition Probabilities, vol. I, “Hydrogen through Neon,” Natl. Stand. Ref. Data Series, Natl. Bur. Stand. 4 (U.S. Govt. Print. Off., Washington, D.C. 20402).Google Scholar
  66. Wiese, W.L., Smith, M.W., and Miles, B.M. 1969, Atomic Transition Probabilities, vol. II, “Sodium through Calcium,” Natl. Stand. Ref. Data Series, Natl. Bur. Stand. 22 (U.S. Govt. Print. Off., Washington, D.C. 20402).Google Scholar
  67. Wygnanski, I. 1963, Tech. Note 63–1, Supersonic Gasdynamics Res. Lab., Mech. Eng. Res. Lab., McGill Univ., Montreal.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Martin C. E. Huber
    • 1
  1. 1.Harvard College ObservatoryCambridgeUSA

Personalised recommendations