Advertisement

Excitation of Gases Using Wavelength-Tunable Lasers

  • C. Forbes DeweyJr.

Abstract

Recent developments in liquid dye lasers, semiconductor lasers, and nonlinear optical techniques have made possible the production of high-intensity monochromatic radiation at wavelengths ranging from the near ultraviolet to the far infrared. Wavelength tuning opens an entirely new dimension in the spectroscopy and resonant excitation of gases.

This paper reviews the state-of-the-art in wavelength tunable lasers. A number of applications are also discussed, including selective excitation spectroscopy, plasma ionization enhancement, and velocity determinations in high-speed gas flow.

Keywords

Triplet State Laser Excitation Semiconductor Laser Stimulate Raman Scattering Ruby Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.F. Ivey, IEEE J. Quantum Electronics, QE-2, 713 (1966).ADSGoogle Scholar
  2. 2.
    F.F. Morehead, Jr., Scientific American, 216, 109–122 (1967).Google Scholar
  3. 3.
    H. Kressel and H. Nelson, IEEE J. Quant. Elect., QE-5, 18 (1969).Google Scholar
  4. 4.
    H. Nelson and H. Kressel, Appl. Phys. Lett., 15, 7 (1969).ADSGoogle Scholar
  5. 5.
    H. Kressel and F.Z. Hawrylo, Appl. Phys. Lett., 17, 169 (1970).ADSGoogle Scholar
  6. 6.
    These data are taken from specifications for RCA Developmental Type TA 2628 for a single emitting element plus corroborating information from the same laboratory appearing in the literature (see M.F. Lamorte et al., IEEE J. Quant. Elect., QE-2, 9 (1966)). These half-widths are considerably less than those reported by other investigators at equivalent temperatures. (B.A. Lengyel, Introduction to Laser Physics, Wiley, N.Y., 1966, p. 145.) Diode arrays consisting of a number of independent lasing elements in series have considerably larger half-widths, on the order of 4–5nm. Presumably proper quality control can reduce the array bandwidth to that of a single element.ADSGoogle Scholar
  7. 7.
    I. Hayashi, M.B. Parish, P.W. Foy, and S. Sumski, Appl. Phys. Lett., 17, 109 (1970).ADSGoogle Scholar
  8. 8.
    M. Garfinkel and W.E. Engler, IEEE Solid State Devices Research Conference, Michigan State U., 1963.Google Scholar
  9. 9.
    M. Lax, Science, 141, 1247 (1963).ADSGoogle Scholar
  10. 10.
    C. Hurwitz, Appl. Phys. Lett., 8, 243 (1966).ADSGoogle Scholar
  11. 11.
    C. Hurwitz, Appl. Phys. Lett., 8, 121 (1966).ADSGoogle Scholar
  12. 12.
    F.H. Nicol, Appl. Phys. Lett., 9, 13 (1966).ADSGoogle Scholar
  13. 13.
    T. Gonda, H. Junker, and M.F. Lamorte, IEEE J. Quant. Elect., 1, 159 (1965).ADSGoogle Scholar
  14. 14.
    E.D. Hinkley and C. Freed, Phys. Rev. Lett., 23, 277 (1969).ADSGoogle Scholar
  15. 15.
    C. Hurwitz, Appl. Phys. Lett., 9. 116 (1966).ADSGoogle Scholar
  16. 16.
    J.A. Giordmaine, Physics Today, January, 1969, pp 39–44.Google Scholar
  17. 17.
    N. Blombergen, Nonlinear Optics, W.B. Benjamin, New York, 1964.Google Scholar
  18. 18.
    G.C. Baldwin, An Introduction to Nonlinear Optics, Plenum Press, New York, 1969.Google Scholar
  19. 19.
    C.C. Wang and C.W. Racette, J. Appl. Phys., 36, 3281 (1965).ADSGoogle Scholar
  20. 20.
    R.W. Terhune, P.D. Maker and C.M. Savage, Appl. Phys. Lett., 2, 54 (1963).ADSGoogle Scholar
  21. 21.
    F.M. Johnson, private communication to Dr. J. Hall, Joint Institute for Laboratory Astrophysics, Boulder, Colorado. See also F.M. Johnson, Electronics, April 18, 1966, pp 82–87; and Nature, 204, 985 (1964).Google Scholar
  22. 22.
    J.E. Geusic, H.J. Levinstein, J.J. Rubin, S. Singh and L.G. Van Uitert, Appl. Phys. Lett., 11, 269 (1967) and 12, 306 (1968).ADSGoogle Scholar
  23. 23.
    S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968).ADSGoogle Scholar
  24. 24.
    M. Bass, D. Bua, R. Mozzi and R. Monchamp, Appl. Phys. Lett., 15, 393 (1969).ADSGoogle Scholar
  25. 25.
    K.F. Hulme, O. Jones, P.H. Davies and M.V. Hobden, Appl. Phys. Lett., 10, 133 (1967).ADSGoogle Scholar
  26. 26.
    D.M. Boggett and A.F. Gibson, Phys. Lett., 26A, 33 (1968).ADSGoogle Scholar
  27. 27.
    J. Warner, Appl. Phys. Lett., 12, 222 (1968).ADSGoogle Scholar
  28. 28.
    W.B. Gandrud, G.D. Boyd, J.H. McFee and F.H. Wehmeier, Appl. Phys. Lett., 16, 59 (1970).ADSGoogle Scholar
  29. 29.
    M.P. Vanyukov, V.D. Volosov, and M.I. Rashchektaeva, Optics and Spectros., 25, 410 (1968).ADSGoogle Scholar
  30. 30.
    R.G. Smith, invited paper presented at the 1969 IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 26–28, 1969.Google Scholar
  31. 31.
    J.A. Giordmaine and R.C. Miller, Phys. Rev. Lett., 14, 973 (1965). See also Physics of Quantum Electronics, P.L. Kelley et al. (Eds.), McGraw-Hill, New York, 1966, pp 31–42.ADSGoogle Scholar
  32. 32.
    J.A. Giordmaine and R.C. Miller, Appl. Phys. Lett., 9, 298 (1966).ADSGoogle Scholar
  33. 33.
    G.D. Boyd and A. Ashkin, Phys. Rev., 146, 187 (1966).ADSGoogle Scholar
  34. 34.
    R.C. Miller and W.A. Nordland, Appl. Phys. Lett., 10, 53 (1967).ADSGoogle Scholar
  35. 35.
    J.D. Bjorkholm, Appl. Phys. Lett., 13, 53 (1968).ADSGoogle Scholar
  36. 36.
    A.J. Kovrigen, P.V. Nikles, A.G. Piskarskas and A.J. Kholodnykh, Moscow State University, IV USSR Symposium on Nonlinear Optics, Kiev, Oct. 25–31, 1968.Google Scholar
  37. 37.
    J. Falk and J.E. Murray, Stanford Microwave Laboratory Report No. 1726, February 1969. See also J.E. Murray and S.E. Harris, J. Appl. Phys., 41, 609 (1970).ADSGoogle Scholar
  38. 38.
    E.O. Ammann, J.M. Yarborough, M.K. Oshman, and P.C. Montgomery, Appl. Phys. Lett., 16, 309 (1970).ADSGoogle Scholar
  39. 39.
    G. Eckhardt, IEEE J. Quantum Elect., QE-2, 1 (1966).ADSGoogle Scholar
  40. 40.
    S. Yoshikawa and Y. Matsumura, Appl. Phys. Lett., 8, 27 (1966).ADSGoogle Scholar
  41. 41.
    D.W. Faries, K.A. Gehring, P.L. Richards and Y.R. Shen, Phys. Rev., 180, 363 (1969).ADSGoogle Scholar
  42. 42.
    N. Van Tran and C.K.N. Patel, Phys. Rev. Lett., 22, 463 (1969).ADSGoogle Scholar
  43. 43.
    F. Brown, IEEE J. Quant. Elect., QE-5, 586 (1969).ADSGoogle Scholar
  44. 44.
    D.C. Laine, Nature, 191, 795 (1961).ADSGoogle Scholar
  45. 45.
    F. Zernike and P.R. Berman, Phys. Rev. Lett., 15, 999 (1965).ADSGoogle Scholar
  46. 46.
    F. Zernike,Phys. Rev. Lett., 22, 931 (1969).ADSGoogle Scholar
  47. 47.
    T. Yajima and K. Inoue, Phys. Lett., 26A, 281 (1968).ADSGoogle Scholar
  48. 48.
    N. Van Tran and C.K.N. Patel, Phys. Rev. Lett., 22, 463 (1969).ADSGoogle Scholar
  49. 49.
    C.F. Dewey, Jr. and L.O. Hocker (to be published).Google Scholar
  50. 50.
    Dr. F.N. Mastrup, TRW Systems Inc., private communication. See also: R. Goldstein and F.N. Mastrup, J. Opt. Soc. Am., 56, 765 (1966), and specifications of TRW Model 27A light source.ADSGoogle Scholar
  51. 51.
    J. Ramirez-Muũoz, Atomic-Absorption Spectroscopy, Elsevier, New York, 1968, Ch. 7 and Ch. 9, Sect. 3.Google Scholar
  52. 52.
    F.A. Morse and F. Kaufman, J. Chem. Phys., 42, 1785 (1965).ADSGoogle Scholar
  53. 53.
    D. Davis and W. Braun, Applied Optics, 7, 2071 (1968).ADSGoogle Scholar
  54. 54.
    F.W. Hoffman, Phys. Fluids, 7, 532 (1964).ADSGoogle Scholar
  55. 55.
    N. Rynn, E. Hinnov and L.C. Johnson, Phys. Fluids, 8, 1368 (1965).ADSGoogle Scholar
  56. 56.
    M. Hashmi, A.J. Vander Houven van Oordt and J.G. Wegrove, in Proc. Conf. on Physics of Quiescent Plasmas, Vol. II, Laboratori Gas Ionizzati, Frascati, 1967, pp 523–530.Google Scholar
  57. 57.
    R.O. Motz, I.C. Rogers, and A.D. Bates, in Proc. Conf. on Physics of Quiescent Plasmas, Vol. II, Laboratori Gas Ionizzati, Frascati, 1967, pp 531–542.Google Scholar
  58. 58.
    E. Hinnov et al., Phys. Fluids, 6, 1779 (1963).ADSGoogle Scholar
  59. 59.
    D. Dimock, E. Hinnov, and L.C. Johnson, Phys. Fluids 12, 1730 (1969).ADSGoogle Scholar
  60. 60.
    R.M. Measures, J. Appl. Phys., 39, 5232 (1968).ADSGoogle Scholar
  61. 61.
    F.P. Bundy, H.M. Strong and A.B. Gregg, J. Appl. Phys., 22, 1069 (1951).ADSGoogle Scholar
  62. 62.
    S.S. Penner, in Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part I, Reinhold Publ. Corp., New York, 1962, pp 565–567.Google Scholar
  63. 63.
    M.J. Seaton, in Atomic and Molecular Processes (D.R. Bates, Ed.), Academic Press, New York, 1962, Ch. 11.Google Scholar
  64. 64.
    E.W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York, 1964.”Google Scholar
  65. 65.
    S.C. Brown, Basic Data of Plasma Physics, 2nd Ed., M.I.T. Press, Cambridge, 1966.Google Scholar
  66. 66.
    A.C.G. Mitchell and M.W. Zemansky, Resonance Radiation and Excited Atoms, 2nd Ed., Cambridge U. Press, New York, 1961.zbMATHGoogle Scholar
  67. 67.
    W.L. Wiese, in Plasma Diagnostic Techniques, R.L. Huddlestone and S.L. Leonard (Eds.), Academic Press, New York, 1965, pp 265–317.Google Scholar
  68. 68.
    E.P. Muntz, Phys. Fluids, 11, 64 (1968).ADSGoogle Scholar
  69. 69.
    J.R. Grieg and J. Cooper, Applied Optics, 7, 2166 (1968).ADSGoogle Scholar
  70. 70.
    R.L. Huddlestone and S.L. Leonard (Eds.), Plasma Diagnostic Techniques, Academic Press, New York, 1965. See esp. Chs. 5,6,8,9, and 10.Google Scholar
  71. 71.
    H.R. Greim, Plasma Spectroscopy, McGraw-Hill, New York, 1964. For Stark broadening parameters, see Table 5.Google Scholar
  72. 72.
    W.B. Tiffany, H.W. Moss, and A.L. Schawlow, Science, 157, 40, (1967).ADSGoogle Scholar
  73. 73.
    J.R. Novak and M.W. Windsor, J. Chem. Phys., 47, 3075 (1967).ADSGoogle Scholar
  74. 74.
    K.G.P. Sulzmann, F. Bien and S.S. Penner, J. Quant. Spectros. and Rad. Trans., 7, 969 (1967).ADSGoogle Scholar
  75. 75.
    A.M. Ronn, J. Chem. Phys., 48, 511 (1968).ADSGoogle Scholar
  76. 76.
    J.T. Yardley and C.B. Moore, J. Chem. Phys., 48, 14 (1968).ADSGoogle Scholar
  77. 77.
    W.J. Tango, J.K. Link and R.N. Zare, J. Chem. Phys., 49, 4264 (1968).ADSGoogle Scholar
  78. 78.
    D.T. Phillips, Bull. Am. Phys. Soc., 13, 1684 (1968).Google Scholar
  79. 79.
    S. Ezekiel and R. Weiss, Phys. Rev. Lett., 20, 91 (1968).ADSGoogle Scholar
  80. 80.
    M. Jeunehomme, J. Chem. Phys., 45, 4433 (1966).ADSGoogle Scholar
  81. 81.
    J.C. Keck, R.A. Allen and R.L. Taylor, J. Quant. Spectros. Rad. Trans., 3, 335 (1963).ADSGoogle Scholar
  82. 82.
    R.A. Allen, AVCO Research Report 236, April, 1966.Google Scholar
  83. 83.
    S.A. Golden, J. Quant. Spectros. Rad. Trans., 7, 225 (1967).Google Scholar
  84. 84.
    B. Stevens and M. Boudart, Ann. N.Y. Acad. Sci., 67, 570 (1957).ADSGoogle Scholar
  85. 85.
    E.D. Hinkley, Appl. Phys. Lett., 16, 351 (1970).ADSGoogle Scholar
  86. 86.
    E.P. Muntz, Phys. Fluids, 5, 80 (1962).ADSGoogle Scholar
  87. 87.
    S.L. Petrie, The Ohio State University, ARL Report 65–122, 1965.Google Scholar
  88. 88.
    F. Robben and L. Talbot, Institute of Engineering Research Report AS-65–4, University of California, Berkeley, 1965.Google Scholar
  89. 89.
    J.R. Golin and C.F. Dewey, Jr. (to be published).Google Scholar
  90. 90.
    C.F. Dewey, Jr., Air Force Flight Dynamics Laboratory Report AFFDL-TR-68–170 (1968).Google Scholar
  91. 91.
    P.E. Oettinger and C.F. Dewey, Jr., AIAA Journal, 8, 880 (1970).ADSGoogle Scholar
  92. 92.
    S. Byron, R.C Stabler and P.I. Bortz, Phys. Rev. Lett., 8, 376 (1962).ADSGoogle Scholar
  93. 93.
    D.R. Bates, A.E. Kingston and R.P. McWhirter, Proc. Royal Soc. (London), A267, 297 (1962).ADSGoogle Scholar
  94. 94.
    Yu. M. Aleskovskii, Soviet Physics — JETP, 17, 570 (1963).Google Scholar
  95. 95.
    L.J. Kelly, J.R. Carpenter and C.F. Dewey, Jr. (to be published).Google Scholar
  96. 96.
    T.J. McIlrath, Appl. Phys. Lett., 15, 41 (1969).ADSGoogle Scholar

Bibliography of Dye Laser Papers

  1. 1.
    Abakumov, G.A., A.P. Simonov, V.V. Fadeer, L.A. Kharitonov, and R.V. Khokhlov, “Ultraviolet lasers using organic-scintillator molecules”, JETP Letters, 9, 9 (1969).ADSGoogle Scholar
  2. 2.
    Bass, M., T.F. Deutsch, and M.J. Weber, “Frequency and time-dependent gain characteristics of laser and flashlamp-pumped dye solution lasers”, Appl. Phys. Lett., 13, 120 (1968).ADSGoogle Scholar
  3. 3.
    Bass, M., and J.I. Steinfeld, “Wavelength dependent time development of the intensity of dye solution lasers”, IEEE J. Quantum Electronics, QE-A, 53 (1968).ADSGoogle Scholar
  4. 4.
    Baxse, K., et al., “Continuous operation of a dye laser”, Proc. Int. Quantum Elect. Conf., Japan, Sept., 1970 (post-deadline paper).Google Scholar
  5. 5.
    Bonch-Bruyevich, A.M., N.N. Kostin, and V.A. Khodovoi, “Selection and adjustment of generated frequencies in dye solutions”, Opt. Spectry., 24, 547 (1968).ADSGoogle Scholar
  6. 6.
    Bowman, M.R., A.J. Gibson, and M.C.W. Sandford, “Atmospheric Sodium measured by a tuned laser radar”, Nature, 221, 456 (1969).ADSGoogle Scholar
  7. 7.
    Bradley, D.J., “Generation of ultra-short laser pulses”, Laboratory Practice 18, 538 (1969).Google Scholar
  8. 8.
    Bradley, D.J., A.J.F. Durant, G.M. Gale, M. Moore, and P.D. Smith, “Characteristics of organic dye lasers as tunable frequency sources for nanosecond spectroscopy”, IEEE J. Quant. Elect., QE-4, 707 (1968).ADSGoogle Scholar
  9. 9.
    Bradley, D.J., A.J.F. Durant, and F. O’Neill, “Generation and application of ultra-short pulses from dye lasers”, IEEE J. Quant. Elect., QE-5, 16 (1969).Google Scholar
  10. 10.
    Bradley, D.J., G.M. Gale, M. Moore, and P.D. Smith, “Longitudinally pumped, narrow-band continuously tunable dye laser”, Phys. Lett., 26A, 378 (1968).ADSGoogle Scholar
  11. 11.
    Brock, E.G., P. Czavinsky, E. Hormats, H.C. Nedderman, D. Stirpe, and F. Unterleitner, “Coherent stimulated emission from molecular crystals”, J. Chem Phys., 35, 759 (1961).ADSGoogle Scholar
  12. 12.
    Broida, H.P., and S.C. Haydon, “Ultraviolet laser emission of organic liquid scintillators using a pulsed nitrogen laser”, Appl. Phys. Lett., 16, 142 (1970).ADSGoogle Scholar
  13. 13.
    Buettner, A.V., B.B. Snavely, and O.G. Peterson, “Triplet state quenching of stimulated emission from organic dye solutions”, Proc. Internatl. Conf. on Molecular Luminescence. New York: Benjamin, 1969, pp 403–422.Google Scholar
  14. 14.
    Claesson, S., and L. Lindqvist, “A fast photolysis flashlamp for very high light intensities”, Arkiv Kemi, 12, 1 (1958).Google Scholar
  15. 15.
    Derkacheva, L.L., and A.I. Krymova, “Stimulated emission of solutions of cyanine dyes”, Sov. Phys. Dokl., 13, 53 (1968).ADSGoogle Scholar
  16. 16.
    Derkacheva, L.V., A.I. Krymova, V.I. Malyshov, and A.S. Martin, “Mode locking in polynethene dye lasers”, Opt. Spectry., 26, 572 (1969).ADSGoogle Scholar
  17. 17.
    Derkacheva, L.L., A.I. Krymova, A.F. Vompe, and I.I. Leukeov, “Stimulated luminescence of dyes in the 720–920 nm region”, Opt. Spectry., 25, 404 (1968).ADSGoogle Scholar
  18. 18.
    Deutsch, T.F., and M. Bass, “Laser-pumped dye lasers near 4000A”, IEEE J., Quant. Elect., QE-4, 260 (1969).ADSGoogle Scholar
  19. 19.
    Deutsch, T.F., M. Bass, P. Meyer, and S. Protopapa, “Emission spectrum of Rhodamine B dye lasers”, Appl. Phys. Lett., 11, 379 (1967).ADSGoogle Scholar
  20. 20.
    Dienes, A., C.V. Shank, and A.M. Trozzolo, “Evidence for excitiplex laser action in commarin dyes by measurements of stimulated fluorescence”, Appl. Phys. Lett., 17, 189 (1970).ADSGoogle Scholar
  21. 21.
    Eastman Kodak Company, Organic Chem. Div., 343 State Street, Rochester, New York, 14650.Google Scholar
  22. 22.
    Farmer, G.I., B.G. Huth, L.M. Taylor, and M.R. Kagan, “Time resolved stimulated emission spectra of an organic dye laser”, Appl. Phys. Lett., 12, 136 (1968).ADSGoogle Scholar
  23. 23.
    Farmer, G.I., B.G. Huth, L.M. Taylor, and M.R. Kagan, “Concentration and dye length dependence of organic dye laser spectra”, Appl. Opt., 8, 363 (1969).ADSGoogle Scholar
  24. 24.
    Fawcett, B.C., “Experimental comparison of tuned organic lasers”, IEEE J. Quant. Elect., QE-6, 473 (1970).Google Scholar
  25. 25.
    Ferrar, C.M., “Mode-locked flashlamp-pumped coumarin dye laser at 4600Å”, IEEE J. Quant. Elect., QE-5, 550 (1969).ADSGoogle Scholar
  26. 26.
    Ferrar, C.M., “Wavelength variations of a flash lamp-pumped sodium fluorescein dye laser”, IEEE J. Quant. Elect., QE-5, 621 (1969).ADSGoogle Scholar
  27. 27.
    Fischer Scientific Company, 461 Riverside Ave., Medford, Mass. 02155.Google Scholar
  28. 28.
    Furamoto, H.W., and H.L. Ceccon, “Flashlamp excited ultraviolet organic liquid lasers”, Bull. A.P.S., 15, 507 (1970).Google Scholar
  29. 29.
    Furamoto, H.W., and H.L. Ceccon, “A high-performance flashlamp for organic dye lasers”, IEEE J. Quant. Elect., QE-5, 17 (1969).ADSGoogle Scholar
  30. 30.
    Furamoto, H.W., and H.L. Ceccon, “Time-dependent inhomogeneities in coaxial lamp dye lasers”, Bull. A.P.S., 15, 505 (1970).Google Scholar
  31. 31.
    Furamoto, H.W., and H.L. Ceccon, “Ultraviolet organic liquid lasers”, Bull. A.P.S., 15, 505 (1970).Google Scholar
  32. 32.
    Furamoto, H.W., and H.L. Ceccon, “Time-dependent spectroscopy of flashlamp pumped dye lasers”, Appl. Phys. Lett., 13, 335 (1968).ADSGoogle Scholar
  33. 33.
    Gallard-Schlesinger, Chemical Company, 584 Mineola Ave., Carle PI., Long Island, N.Y. 11514.Google Scholar
  34. 34.
    Gibbs, W.E.K., and H.A. Kellock, “Time-resolved spectroscopy of organic dye lasers”, IEEE J. Quantum Elect., QE-4, 293 (1968).ADSGoogle Scholar
  35. 35.
    Gibson, A.J., “A flashlamp-pumped dye laser for resonance scattering studies of the upper atmosphere”, J. Sci. Inst. (J. Phys. E), 2, (1969).Google Scholar
  36. 36.
    Glenn, W.H., M.J. Brienza, and A.J. de Maria, “Mode locking of an organic dye laser”, Appl. Phys. Lett., 12, 54 (1968).ADSGoogle Scholar
  37. 37.
    Gregg, D.W., and S.J. Thomas, “New lasing organic dyes flash-lamp-pumped”, IEEE J. Quant. Elect., QE-5, 302 (1969).ADSGoogle Scholar
  38. 38.
    Gregg, D.W., et al., “Wavelength tunability of new flashlamp-pumped laser dyes”, IEEE J. Quant. Elect., QE-6, 270 (1970).ADSGoogle Scholar
  39. 39.
    Heller, A., “Liquid laser-design of neodymiurn-based inorganic ionic systems”, J. Mol. Spectry., 28, 101 (1968).ADSGoogle Scholar
  40. 40.
    Heller, A., “Liquid lasers-fluorescence, absorption and energy transfer of rare earth ion solutions in selenium oxychloride”, J. Mol. Spectry., 28, 208 (1968).ADSGoogle Scholar
  41. 41.
    Huth, B.G., and G.I. Farmer, “Laser action in 9,10 diphenyl-anthracene”, IEEE J. Quant. Elect., QE-4, 427 (1968).ADSGoogle Scholar
  42. 42.
    Kagan, M.R., G.I. Farmer, and B.G. Huth, “Organic dye lasers”, Laser Focus, September, 1968, pp 26–33.Google Scholar
  43. 43.
    Keller, R.A., “Effect of quenching of molecular triplet states in organic dye lasers”, IEEE J. Quant. Elect., QE-6, 411 (1970).ADSGoogle Scholar
  44. 44.
    Koch-Light Laboratories, Ltd., Colnbrook Buckinghamshire, England.Google Scholar
  45. 45.
    Kogelnik, H., C.V. Shank, T.P. Sosnowski, and A. Dienes, “Hologram wavelength selector for dye lasers”, Appl. Phys. Lett., 16, 499 (1970).ADSGoogle Scholar
  46. 46.
    Kotsubanov, V.D., Yu. V. Naboikin, L.A. Ogurtsova, A.P. Podgornyi, and F.S. Pokrovskaya, “Generation of light in solutions of dyes in the 550–650nm range”, Opt. Spectry., 25, 159 (1968).ADSGoogle Scholar
  47. 47.
    Kotsubanov, V.D., Yu. V. Naboikin, L.A. Ogurtsova, A.P. Podgornyi, and F.S. Pokrouskaya, “Laser action in solutions of organic luminophors in the 400–650nm range”, Opt. Spectry., 25, 406 (1969).ADSGoogle Scholar
  48. 48.
    Lankard, J.R., and R.J. Von Gutfield, “Organic lasers excited by a pulsed N2 laser”, IEEE J. Quant. Elect., QE-5, 625 (1969).Google Scholar
  49. 49.
    Lempicki, A., and H. Samelson, “Organic laser systems”, Lasers, (A.K. Levine, Ed.), Vol. 1, M. Dekker, N.Y., 1966, pp 181–252.Google Scholar
  50. 50.
    L.K. Lidholt, “Dye laser pumped by an ultraviolet nitrogen laser”, IEEE J. Quant. Elect., QE-6, 162 (1970).ADSGoogle Scholar
  51. 51.
    Mack, M.E., “Measurement of nanosecond fluorescence decay times”, J. Appl. Phys., 39, 2483 (1968).ADSGoogle Scholar
  52. 52.
    Mack, M., “Superradiant traveling wave dye laser”, Appl. Phys. Lett., 15, 166 (1969).ADSGoogle Scholar
  53. 53.
    McCumber, D.E., “Theory of phonon-terminated optical masers”, Phys. Rev. (A), 134, 299 (1964).ADSGoogle Scholar
  54. 54.
    McFarland, B.B., “Laser second-harmonic-induced stimulated emission of organic dyes”, Appl. Phys. Lett., 10, 208 (1967).ADSGoogle Scholar
  55. 55.
    McIlrath, T.J., “Absorption from excited states in laser-pumped calcium”, Appl. Phys. Lett., 15, 41 (1969).ADSGoogle Scholar
  56. 56.
    Measures, R.M., “Selective excitation spectroscopy and some possible applications”, J. Appl. Phys., 39, 5232 (1968).ADSGoogle Scholar
  57. 57.
    Miyazoe, Y., and M. Maeda, “Stimulated emission from 19 polymethene dyes-laser action over the continuous range 710–1060my”, Appl. Phys. Lett., 12, 206 (1968).ADSGoogle Scholar
  58. 58.
    Murakawa, S., G. Yamaguchi, and C. Yamanaka, “Wavelength shift of dye solution laser”, Japan J. Appl. Phys., 7, 681 (1968).ADSGoogle Scholar
  59. 59.
    Myer, J.A., C.J. Johnson, E. Kierstead, R.P. Sharma, and I. Itzkan, “Dye laser stimulation with a pulsed N2 laser line at 3371Å”, Appl. Phys. Lett., 16, 3 (1970).ADSGoogle Scholar
  60. 60.
    Neumann, G., and M. Hercher, “Characteristics of short-cavity dye lasers”, IEEE J. Quant. Elect., QE-5, 17 (1969).Google Scholar
  61. 61.
    Pappalardo, R., H. Samelson, and A. Lempicki, “Long pulse laser emission from rhodamine 6G using cyclooctatetrene”, Appl. Phys. Lett., 16, 267 (1970).ADSGoogle Scholar
  62. 62.
    Peterson, O.G., W.C. McColgin, and J.H. Eberly, “Triplet state effects in dye lasers at threshold”, Phys. Lett., A26, 399 (1969).ADSGoogle Scholar
  63. 63.
    Peterson, O.G., and B.B. Snavely, “Stimulated emission from flashlamp excited organic dyes in polymethyl methacrylate” Appl. Phys. Lett., 12, 238 (1968).ADSGoogle Scholar
  64. 64.
    Peterson, O.G., and B.B. Snavely, “Multiple-dye solution lasers”, Bull. Am. Phys. Soc., 13, 397 (1968).Google Scholar
  65. 65.
    Peterson, O.G., S.A. Tuccio, and B.B. Snavely, “CW operation of an organic dye solution laser”, Appl. Phys. Lett., 17, 245 (1970).ADSGoogle Scholar
  66. 66.
    Rautian, S.G., and I.I. Sobelmann, “Remarks on negative absorption”, Opt. Spectry., 10, 65 (1961).ADSGoogle Scholar
  67. 67.
    Samelson, H., “Liquid lasers: promising solutions”, Electronics, Nov. 11, 1968, pp 142–147.Google Scholar
  68. 68.
    Schaefer, F.P., “Organic dye lasers”, invited paper presented at the 1968 Quantum Electronics Conference, Miami, Fla., May 1968.Google Scholar
  69. 69.
    Schaefer, F.P., W. Schmidt, and K. Marth, “New dye lasers covering the visible spectrum”, Phys. Lett., 24A, 280 (1967).ADSGoogle Scholar
  70. 70.
    Schaefer, F.P., W. Schmidt, and J. Volze, “Organic dye solution laser”, Appl. Phys. Lett., 9, 306 (1966).ADSGoogle Scholar
  71. 71.
    Schappert, G.T., K.W. Billman, and D.C. Burnham, “Temperature tuning of an organic dye laser”, Appl. Phys. Lett., 13, 124 (1968).ADSGoogle Scholar
  72. 72.
    Schmeltekoff, A., National Bureau of Standards, Boulder, Colorado, private communication, 1969.Google Scholar
  73. 73.
    Schmidt, W., and F.P. Schaefer, “Self-mode locking of dye lasers with saturable absorbers”, Phys. Lett., 26A, 558 (1968).ADSGoogle Scholar
  74. 74.
    Schmidt, W., and F.P. Schaefer, “Blitzlampen gepumpte Farbstoff-Laser”, Z. Naturforsch., 22A 1563 (1967).ADSGoogle Scholar
  75. 75.
    Shank, C.V., A. Dienes, A.M. Trozzolo, and J.A. Myer, “Near UV to yellow tunable laser emission from an organic dye”, Appl. Phys. Lett., 16, 405 (1970).ADSGoogle Scholar
  76. 76.
    Snavely, B.B., “Flashlamp-excited organic dye lasers”, Proc. IEEE, 57, 1374 (1969).Google Scholar
  77. 77.
    Snavely, B.B., and O.G. Peterson, “Experimental measurement of the critical population inversion for the dye solution laser”, IEEE J. Quantum Electronics, QE-4, 540 (1968).ADSGoogle Scholar
  78. 78.
    Snavely, B.B., O.G. Peterson, and R.F. Reithel, “Blue laser emission from a flashlamp-excited organic dye solution”, Appl. Phys. Letters, 11, 275 (1967).ADSGoogle Scholar
  79. 79.
    Snavely, B.B., and F.P. Schaefer, “Feasibility of CW operation of dye lasers”, Phys. Lett. 28A, 728 (1969).ADSGoogle Scholar
  80. 80.
    Soffer, B.H., and V. Evtuhov, “A quasi-continuous dye laser”, IEEE J. Quant. Elect., QE-4, 386 (1969).Google Scholar
  81. 81.
    Soffer, B.H., and J.W. Linn, “Continuously tunable picosecond-pulse organic-dye-laser”, J. Appl. Phys., 39, 5859 (1968).ADSGoogle Scholar
  82. 82.
    Soffer, B.H., and B.B. McFarland, “Continuously tunable narrow-band organic dye lasers”, Appl. Phys. Letters, 10, 266 (1967).ADSGoogle Scholar
  83. 83.
    Sorokin, P.P., “Organic lasers”, Sci. Am., Feb., 1969, pp 30–40.Google Scholar
  84. 84.
    Sorokin, P.P., W.H. Culver, E.C. Hammond, and J.R. Lankard, “End-pumped stimulated emission from a thiacarbocyanine dye”, IBM J. Res. Develop., 10, 401 (1966).Google Scholar
  85. 85.
    Sorokin, P.P., and L.R. Lankard, “Stimulated emission observed from an organic dye, chloroaluminum phtalocyanine”, IBM J. Res. Develop., 10, 162 (1966).Google Scholar
  86. 86.
    Sorokin, P.P., and J.R. Lankard, “Flashlamp excitation of organic dye lasers: a short communication”, IBM J. Res. Develop. 11, 148 (1967).Google Scholar
  87. 87.
    Sorokin, P.P., J.R. Lankard, E.C. Hammond, and V.L. Moruzzi, “Laser pumped stimulated emission from organic dyes: experimental studies and analytical comparisons”, IBM J. Res. Develop., 11, 130 (1967).Google Scholar
  88. 88.
    Sorokin, P.P., J.R. Lankard, V.L. Moruzzi, and E.C. Hammond, “Flashlamp pumped organic dye lasers”, J. Chem. Phys., 48, 4726 (1968).ADSGoogle Scholar
  89. 89.
    Spaeth, M.L., and D.P. Bortfield, “Stimulated emission from polymethine dyes”, Appl. Phys. Lett. 9, 179 (1966).ADSGoogle Scholar
  90. 90.
    Srinivasan, R., “New materials for flash-pumped organic lasers”, IEEE J. Quant. Elect. QE-5, 552 (1969).ADSGoogle Scholar
  91. 91.
    Stockman, D.L., “Stimulated emission considerations in fluorescent organic molecules”, Proc. of the 1964 ONR Conf. on Organic Lasers, available as Doc. No. AD 447468 from the Defense Documentation Center for Scientific and Technical Information, Cameron Station, Alexandria, Va.Google Scholar
  92. 92.
    Stockman, D.L., W.R. Mallory, and K.F. Tittel, “Stimulated emission in aromatic organic compounds”, Proc. IEEE, 52, 318 (1964).Google Scholar
  93. 93.
    Turro, N.J., Molecular Photochemistry. New York: Benjamin, 1965, pp 54–55.Google Scholar
  94. 94.
    Varga, P., R.G. Kryukov, V.F. Kuprishov, Yu. V. Senatskii, “Emission of polymethene dye used in neodynium glass lasers”, Opt. Spectry. 26, 545 (1969).ADSGoogle Scholar
  95. 95.
    Walther, H., and J.L. Hall, “Tunable dye laser with narrow spectral output”, Appl. Phys. Lett., 17, 239 (1970).ADSGoogle Scholar
  96. 96.
    Weber, M.J., and M. Bass, “Frequency and time dependent gain characteristics of dye lasers”, IEEE J. Quant. Elect. QE-5, 175 (1969).Google Scholar
  97. 97.
    Winston, H., and R.A. Gudmundsen, “Refractive index effects in proposed liquid lasers”, Appl. Opt., 3, 143 (1964).ADSGoogle Scholar
  98. 98.
    Yariv, A., and J.P. Gordon, “The laser”, Proc. IEEE, 51, 4 (1963).Google Scholar

Additional Bibliography

  1. 99.
    Boiteux, M., and O. de Witte, “A transverse flow repetitive dye laser”, Appl. Optics, 9. 514 (1970).ADSGoogle Scholar
  2. 100.
    Capelle, G., and D. Phillips, “Pumping organic dyes with a nitrogen laser”, Appl. Optics, 9, 517 (1970).ADSGoogle Scholar
  3. 101.
    Clark, J.C., and T.J. Davies, “Stimulated emission from organic dye solutions pumped by a small coaxial N2 laser”, Appl. Optics, 9, 1725 (1970).ADSGoogle Scholar
  4. 102.
    Marling, J.B., D.W. Gregg, and S.J. Thomas, “Effect of oxygen on flashlamp-pumped organic-dye lasers”, IEEE J. Quant. Elect., QE-6, 570 (1970).ADSGoogle Scholar
  5. 103.
    von Gutfield, R.J., B. Welber, and E.E. Tynan, “Increased laser tunability by acidification of organic dyes”, IEEE J. Quant. Elect., QE-6, 532 (1970).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • C. Forbes DeweyJr.
    • 1
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations