Skip to main content

A Summary of Recent Research on Continuous-Wave Chemical Lasers

  • Conference paper
Modern Optical Methods in Gas Dynamic Research

Abstract

It has been a little over 5 years since the first pulsed chemical laser was developed by Kasper and Pimentel (1). During this time, important advances have been made contributing to our understanding of the kinetic mechanisms by which population inversions can be created in chemically reacting gases. Much of this information comes to us from the pulsed chemical laser experiments of Airey, Gross, Moore, Pimentel, and others (2–10), and from the pioneering experimental and theoretical studies of infrared chemiluminescence by Polanyi and co-workers (11–13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. V. V. Kasper and G. C. Pimentel, Phys. Rev. Letters, 14, 352 (1965).

    Article  ADS  Google Scholar 

  2. J. Richard Airey, IEEE J. Quantum Electron, QE-3 208 (1967).

    Article  ADS  Google Scholar 

  3. J. Richard Airey, J. Chem. Phys., 52, 156 (1970).

    Article  ADS  Google Scholar 

  4. Rolf W. F. Gross, J. Chem. Phys., 50, 1889 (1969).

    Article  ADS  Google Scholar 

  5. H. L. Chen, J. C. Stephenson, and C. Bradley Moore, Chem. Phys. Letters, 2, 593 (1968).

    Article  ADS  Google Scholar 

  6. C. Bradley Moore, IEEE J. Quantum Electron, QE-4, 52 (1968).

    Article  ADS  Google Scholar 

  7. P. H. Cornell and G. C. Pimentel, J. Chem. Phys., 49, 1379 (1968).

    Article  ADS  Google Scholar 

  8. K. L. Kompa, J. H. Parker, and G. C. Pimentel, J. Chem. Phys., 49, 4257 (1968).

    Article  ADS  Google Scholar 

  9. J. H. Parker and G. C. Pimentel, J. Chem. Phys., 51, 91 (1969).

    Article  ADS  Google Scholar 

  10. The atom exchange reaction, O + CS → CO + S, is believed to be responsible for the chemical laser emission from CO observed with the O2/CS2 system. See, for example: G. Hancock and I. W. M. Smith, Chem. Phys. Letters, 3, 573 (1969)

    Article  ADS  Google Scholar 

  11. C. Wittig, J. C. Hassler, and P. C. Coleman, Appl. Phys. Letters, 16, 117 (1970).

    Article  ADS  Google Scholar 

  12. K. G. Anlauf, P. J. Kuntz, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Discussions Faraday Soc., 44, 183 (1967).

    Article  Google Scholar 

  13. J. C. Polanyi and W. H. Wong, J. Chem. Phys., 51, 1439 (1969).

    Article  ADS  Google Scholar 

  14. M. H. Mok and J. C. Polanyi, J. Chem. Phys., 51, 1451 (1969).

    Article  ADS  Google Scholar 

  15. D. J. Spencer, T. A. Jacobs, H. Mirels, and R. W. F. Gross, Int. J. Chem. Kinetics, 1, 493 (1969).

    Article  Google Scholar 

  16. T. A. Cool, R. R. Stephens, and T. J. Falk, Int. J. of Chem. Kinetics, 1, 495 (1969).

    Article  Google Scholar 

  17. J. R. Airey and S. F. McKay, Appl. Phys. Letters, 15, 401 (1969).

    Article  ADS  Google Scholar 

  18. D. J. Spencer, H. Mirels, and T. A. Jacobs, Appl. Phys. Letters 16, 384 (1970)

    Article  ADS  Google Scholar 

  19. M. A. Kwok, R. R. Giedt and R. W. F. Gross, Appl. Phys. Letters, l6, 386 (1970).

    Article  ADS  Google Scholar 

  20. T. A. Cool, J. A. Shirley, and R. R. Stephens, “Operating Characteristics of a Transverse Flow DF-CO2 Purely Chemical Laser” (to be published) Appl. Phys. Letters.

    Google Scholar 

  21. T. A. Cool and R. R. Stephens, J. Chem. Phys., 51, 5175 (1969)

    Article  ADS  Google Scholar 

  22. T. A. Cool and R. R. Stephens, Appl. Phys. Letters, 16, 55 (1970).

    Article  ADS  Google Scholar 

  23. T. A. Cool, T. J. Falk, and R. R. Stephens, Appl. Phys. Letters, 15, 318 (1969).

    Article  ADS  Google Scholar 

  24. T. A. Cool and R. R. Stephens, J. Chem. Phys., 52, 3304 (1970).

    Article  ADS  Google Scholar 

  25. T. A. Cool, R. R. Stephens, and J. A. Shirley, “HCl, HF, and DF Partially Inverted cw Chemical Lasers” (to be published) J. Appl. Phys. The HCl cw Chemical Laser was also reported at the 1970 A.P.S. Meeting, see Bull. Am. Phys. Soc, 15, 355 (1970).

    Google Scholar 

  26. D. Naegli and C. J. Ultee, “A cw HCl Chemical Laser” (to be published) Chem. Phys. Letters.

    Google Scholar 

  27. C. Wittig, J. C. Hassler, and P. D. Coleman, “CW Laser Oscillation in a Carbon Monoxide Chemical Laser”, Nature, 226, 845 (1970).

    Article  ADS  Google Scholar 

  28. R. D. Suart, G. H. Kimbell, and S. J. Arnold, Chem. Phys. Letters, 5, 519 (1970).

    Article  ADS  Google Scholar 

  29. See for example, M. J. Berry and G. C. Pimentel, J. Chem. Phys. 51, 2274 (1968).

    Article  ADS  Google Scholar 

  30. J. C. Polanyi, Appl. Opt. Suppl. 2, Chemical Lasers, pp. 109–127 (1965).

    Google Scholar 

  31. K. G. Anlauf, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Phys. Letters, 24A, 208 (1967).

    ADS  Google Scholar 

  32. T. A. Cool, Appl. Phys. Letters, 9, 418 (1966).

    Article  ADS  Google Scholar 

  33. T. A. Cool and J. A. Shirley, Appl. Phys. Letters, 14, 70 (1969).

    Article  ADS  Google Scholar 

  34. The HCl-CO2, HF-CO2, DF-CO2 and HBr-CO2 chemical lasers operated on the P(l8) transition at 10.57 μ. The HF, DF, and HCl chemical lasers operated on a variety of P-branch transitions, see ref. 22. A large amount of helium vas needed for the HF, DF, and HCl lasers (Table III) to keep the rotational temperature low (300°K).

    Google Scholar 

  35. C. K. Rhodes, M. J. Kelley, and A. Javan, J. Chem. Phys., 48, 5730 (1968).

    Article  ADS  Google Scholar 

  36. C Bradley Moore, Accounts of Chem. Research, 2, 103 (1969).

    Article  Google Scholar 

  37. W. A. Rosser, A. D. Wood, and E. T. Gerry, J. Chem. Phys., 50, 4996 (1969).

    Article  ADS  Google Scholar 

  38. V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, Appl. Phys. Letters, 15, (1969).

    Google Scholar 

  39. R. A. Meinzer, “A Continuous-wave Combustion Laser”, to be published, Int. J. of Chem. Kinetics.

    Google Scholar 

  40. O. M. Batovskii, G. K. Vasil’ev, E. F. Makarov, and V. L. Tal’roze, ZhETF Pis. Red., 9, 341, (1969)

    ADS  Google Scholar 

  41. O. M. Batovskii, G. K. Vasil’ev, E. F. Makarov, and V. L. Tal’roze Sov. Phys. — JETP Lett., 9, 375 (1969).

    ADS  Google Scholar 

  42. N. G. Basov, L. V. Kulakov, E. P. Markin, A. I. Nikitin, and A. N. Oraevskii, ZhETF Pis, Red., 9, 6l3 (1969)

    Google Scholar 

  43. N. G. Basov, L. V. Kulakov, E. P. Markin, A. I. Nikitin, and A. N. Oraevskii Sov. Phys. -JETP Lett., 9, 375 (1969).

    ADS  Google Scholar 

  44. J. R. Bowen and K. A. Overholser, Astronautica Acta, 14, 475 (1969).

    Google Scholar 

  45. T. A. Cool, “Fluid Mixing Lasers”, NASA Conference on Gas Lasers, NASA Hdqts., Washington D. C. 15–16 July 1968.

    Google Scholar 

  46. R. W. F. Gross, R. R. Geidt, and T. A. Jacobs, J. Chem. Phys., 51, 1250 (1969).

    Article  ADS  Google Scholar 

  47. R. A. Gross, and J. A. Nicholls, “Stationary Detonation Waves”, Combustion and Propulsion, 169–177, Fourth AGARD Coll. London: Pergamon, (1961).

    Google Scholar 

  48. R. A. Gross and W. Chinitz, “A Study of Supersonic Combustion”, J. Aerospace Sciences, 27, 517–524, 534, (1960).

    Google Scholar 

  49. J. A. Nicholls, E. K. Dabora, and R. L. Gealer, “Studies in Connection with Stabilized Gaseous Detonation Waves”, Seventh Symposium on Combustion, 144–150, Butterworth, London,(1958).

    Google Scholar 

  50. G. A. Kapralova, E. M. Trofimova, and A. E. Shilov, Kinetika i Kataliz, 6, 977 (1965)

    Google Scholar 

  51. G. A. Kapralova, E. M. Trofimova, and A. E. Shilov Sov, Chem. Kinetics and Catalysis, 6, 884 (1965).

    Google Scholar 

  52. D. W. Gregg, B. Krawetz, R. K. Pearson, B. R. Schleicher, S. J. Thomas, E. B. Huss, K, J. Pettipiece, and R. E. Niver, “Electron Beam Initiation of a Pulsed Chemical Laser” (to be published) Appl. Phys. Letters.

    Google Scholar 

  53. T. V. Jacobson and G. H. Kimbell, “A Transversely Spark Initiated Chemical Laser with High Pulse Energies”, (to be published) Appl. Phys. Letters.

    Google Scholar 

  54. See, for example, Physics Today, July, (1970), p. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this paper

Cite this paper

Cool, T.A. (1971). A Summary of Recent Research on Continuous-Wave Chemical Lasers. In: Dosanjh, D.S. (eds) Modern Optical Methods in Gas Dynamic Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1923-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1923-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1925-2

  • Online ISBN: 978-1-4684-1923-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics