Advertisement

A Summary of Recent Research on Continuous-Wave Chemical Lasers

  • Terrill A. Cool

Abstract

It has been a little over 5 years since the first pulsed chemical laser was developed by Kasper and Pimentel (1). During this time, important advances have been made contributing to our understanding of the kinetic mechanisms by which population inversions can be created in chemically reacting gases. Much of this information comes to us from the pulsed chemical laser experiments of Airey, Gross, Moore, Pimentel, and others (2–10), and from the pioneering experimental and theoretical studies of infrared chemiluminescence by Polanyi and co-workers (11–13).

Keywords

Detonation Wave Supersonic Flow Population Inversion Product Molecule Chemical Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. V. V. Kasper and G. C. Pimentel, Phys. Rev. Letters, 14, 352 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    J. Richard Airey, IEEE J. Quantum Electron, QE-3 208 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    J. Richard Airey, J. Chem. Phys., 52, 156 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    Rolf W. F. Gross, J. Chem. Phys., 50, 1889 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    H. L. Chen, J. C. Stephenson, and C. Bradley Moore, Chem. Phys. Letters, 2, 593 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    C. Bradley Moore, IEEE J. Quantum Electron, QE-4, 52 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    P. H. Cornell and G. C. Pimentel, J. Chem. Phys., 49, 1379 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    K. L. Kompa, J. H. Parker, and G. C. Pimentel, J. Chem. Phys., 49, 4257 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    J. H. Parker and G. C. Pimentel, J. Chem. Phys., 51, 91 (1969).ADSCrossRefGoogle Scholar
  10. 10a.
    The atom exchange reaction, O + CS → CO + S, is believed to be responsible for the chemical laser emission from CO observed with the O2/CS2 system. See, for example: G. Hancock and I. W. M. Smith, Chem. Phys. Letters, 3, 573 (1969)ADSCrossRefGoogle Scholar
  11. 10b.
    C. Wittig, J. C. Hassler, and P. C. Coleman, Appl. Phys. Letters, 16, 117 (1970).ADSCrossRefGoogle Scholar
  12. 11.
    K. G. Anlauf, P. J. Kuntz, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Discussions Faraday Soc., 44, 183 (1967).CrossRefGoogle Scholar
  13. 12.
    J. C. Polanyi and W. H. Wong, J. Chem. Phys., 51, 1439 (1969).ADSCrossRefGoogle Scholar
  14. 13.
    M. H. Mok and J. C. Polanyi, J. Chem. Phys., 51, 1451 (1969).ADSCrossRefGoogle Scholar
  15. 14.
    D. J. Spencer, T. A. Jacobs, H. Mirels, and R. W. F. Gross, Int. J. Chem. Kinetics, 1, 493 (1969).CrossRefGoogle Scholar
  16. 15.
    T. A. Cool, R. R. Stephens, and T. J. Falk, Int. J. of Chem. Kinetics, 1, 495 (1969).CrossRefGoogle Scholar
  17. 16.
    J. R. Airey and S. F. McKay, Appl. Phys. Letters, 15, 401 (1969).ADSCrossRefGoogle Scholar
  18. 17.
    D. J. Spencer, H. Mirels, and T. A. Jacobs, Appl. Phys. Letters 16, 384 (1970)ADSCrossRefGoogle Scholar
  19. 17a.
    M. A. Kwok, R. R. Giedt and R. W. F. Gross, Appl. Phys. Letters, l6, 386 (1970).ADSCrossRefGoogle Scholar
  20. 18.
    T. A. Cool, J. A. Shirley, and R. R. Stephens, “Operating Characteristics of a Transverse Flow DF-CO2 Purely Chemical Laser” (to be published) Appl. Phys. Letters.Google Scholar
  21. 19.
    T. A. Cool and R. R. Stephens, J. Chem. Phys., 51, 5175 (1969)ADSCrossRefGoogle Scholar
  22. 19a.
    T. A. Cool and R. R. Stephens, Appl. Phys. Letters, 16, 55 (1970).ADSCrossRefGoogle Scholar
  23. 20.
    T. A. Cool, T. J. Falk, and R. R. Stephens, Appl. Phys. Letters, 15, 318 (1969).ADSCrossRefGoogle Scholar
  24. 21.
    T. A. Cool and R. R. Stephens, J. Chem. Phys., 52, 3304 (1970).ADSCrossRefGoogle Scholar
  25. 22.
    T. A. Cool, R. R. Stephens, and J. A. Shirley, “HCl, HF, and DF Partially Inverted cw Chemical Lasers” (to be published) J. Appl. Phys. The HCl cw Chemical Laser was also reported at the 1970 A.P.S. Meeting, see Bull. Am. Phys. Soc, 15, 355 (1970).Google Scholar
  26. 23.
    D. Naegli and C. J. Ultee, “A cw HCl Chemical Laser” (to be published) Chem. Phys. Letters.Google Scholar
  27. 24.
    C. Wittig, J. C. Hassler, and P. D. Coleman, “CW Laser Oscillation in a Carbon Monoxide Chemical Laser”, Nature, 226, 845 (1970).ADSCrossRefGoogle Scholar
  28. 25.
    R. D. Suart, G. H. Kimbell, and S. J. Arnold, Chem. Phys. Letters, 5, 519 (1970).ADSCrossRefGoogle Scholar
  29. 26.
    See for example, M. J. Berry and G. C. Pimentel, J. Chem. Phys. 51, 2274 (1968).ADSCrossRefGoogle Scholar
  30. 27.
    J. C. Polanyi, Appl. Opt. Suppl. 2, Chemical Lasers, pp. 109–127 (1965).Google Scholar
  31. 28.
    K. G. Anlauf, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Phys. Letters, 24A, 208 (1967).ADSGoogle Scholar
  32. 29.
    T. A. Cool, Appl. Phys. Letters, 9, 418 (1966).ADSCrossRefGoogle Scholar
  33. 30.
    T. A. Cool and J. A. Shirley, Appl. Phys. Letters, 14, 70 (1969).ADSCrossRefGoogle Scholar
  34. 31.
    The HCl-CO2, HF-CO2, DF-CO2 and HBr-CO2 chemical lasers operated on the P(l8) transition at 10.57 μ. The HF, DF, and HCl chemical lasers operated on a variety of P-branch transitions, see ref. 22. A large amount of helium vas needed for the HF, DF, and HCl lasers (Table III) to keep the rotational temperature low (300°K).Google Scholar
  35. 32.
    C. K. Rhodes, M. J. Kelley, and A. Javan, J. Chem. Phys., 48, 5730 (1968).ADSCrossRefGoogle Scholar
  36. 33.
    C Bradley Moore, Accounts of Chem. Research, 2, 103 (1969).CrossRefGoogle Scholar
  37. 34.
    W. A. Rosser, A. D. Wood, and E. T. Gerry, J. Chem. Phys., 50, 4996 (1969).ADSCrossRefGoogle Scholar
  38. 35.
    V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, Appl. Phys. Letters, 15, (1969).Google Scholar
  39. 36.
    R. A. Meinzer, “A Continuous-wave Combustion Laser”, to be published, Int. J. of Chem. Kinetics.Google Scholar
  40. 37.
    O. M. Batovskii, G. K. Vasil’ev, E. F. Makarov, and V. L. Tal’roze, ZhETF Pis. Red., 9, 341, (1969)ADSGoogle Scholar
  41. 37a.
    O. M. Batovskii, G. K. Vasil’ev, E. F. Makarov, and V. L. Tal’roze Sov. Phys. — JETP Lett., 9, 375 (1969).ADSGoogle Scholar
  42. 38.
    N. G. Basov, L. V. Kulakov, E. P. Markin, A. I. Nikitin, and A. N. Oraevskii, ZhETF Pis, Red., 9, 6l3 (1969)Google Scholar
  43. 38a.
    N. G. Basov, L. V. Kulakov, E. P. Markin, A. I. Nikitin, and A. N. Oraevskii Sov. Phys. -JETP Lett., 9, 375 (1969).ADSGoogle Scholar
  44. 39.
    J. R. Bowen and K. A. Overholser, Astronautica Acta, 14, 475 (1969).Google Scholar
  45. 40.
    T. A. Cool, “Fluid Mixing Lasers”, NASA Conference on Gas Lasers, NASA Hdqts., Washington D. C. 15–16 July 1968.Google Scholar
  46. 41.
    R. W. F. Gross, R. R. Geidt, and T. A. Jacobs, J. Chem. Phys., 51, 1250 (1969).ADSCrossRefGoogle Scholar
  47. 42.
    R. A. Gross, and J. A. Nicholls, “Stationary Detonation Waves”, Combustion and Propulsion, 169–177, Fourth AGARD Coll. London: Pergamon, (1961).Google Scholar
  48. 43.
    R. A. Gross and W. Chinitz, “A Study of Supersonic Combustion”, J. Aerospace Sciences, 27, 517–524, 534, (1960).Google Scholar
  49. 44.
    J. A. Nicholls, E. K. Dabora, and R. L. Gealer, “Studies in Connection with Stabilized Gaseous Detonation Waves”, Seventh Symposium on Combustion, 144–150, Butterworth, London,(1958).Google Scholar
  50. 45.
    G. A. Kapralova, E. M. Trofimova, and A. E. Shilov, Kinetika i Kataliz, 6, 977 (1965)Google Scholar
  51. 45.
    G. A. Kapralova, E. M. Trofimova, and A. E. Shilov Sov, Chem. Kinetics and Catalysis, 6, 884 (1965).Google Scholar
  52. 46.
    D. W. Gregg, B. Krawetz, R. K. Pearson, B. R. Schleicher, S. J. Thomas, E. B. Huss, K, J. Pettipiece, and R. E. Niver, “Electron Beam Initiation of a Pulsed Chemical Laser” (to be published) Appl. Phys. Letters.Google Scholar
  53. 47.
    T. V. Jacobson and G. H. Kimbell, “A Transversely Spark Initiated Chemical Laser with High Pulse Energies”, (to be published) Appl. Phys. Letters.Google Scholar
  54. 48.
    See, for example, Physics Today, July, (1970), p. 55.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Terrill A. Cool
    • 1
  1. 1.Department of Thermal EngineeringCornell UniversityIthacaNew YorkUSA

Personalised recommendations