Laser — Generation of Rarefied Plasma Flows

  • David W. Koopman
Conference paper


A focused pulse from a Q-switched laser incident on a solid target is used to generate a plasma which expands into a vacuum o low density background gas. In a typical situation, conditions measured 33 cm from a aluminum target are: flow velocity U = 107cm/sec, ne = ΣniZi = 5 × 1011/cm3, Te = 3 eV, U2/2 = 2 keV, Ti ≤ 10 eV, λii ~ 100 cm, and Debye distance λD ~ 10-3cm. These properties have been measured with Langmuir probes and microwave interferometers incorporating Lecher — wire elements. Applications of this technique of plasma flow generation to investigations of probe response in flowing plasmas and to studies of collisionless counterstreaming plasma instabilities will be described.


Laser Plasma Langmuir Probe baCkground Plasma Probe Voltage Laser Firing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.F. Haught and D.H. Polk, Phys. Fluid 9, 2047 (1966).ADSCrossRefGoogle Scholar
  2. [2]
    D.W. Gregg and S.J. Thomas, J. Appl. Phys. 38, 1729 (1967).ADSCrossRefGoogle Scholar
  3. [3]
    D.W. Koopman, Bull. Am. Phys. Soc. 11, 464 (1966);Google Scholar
  4. [3a]
    D.W. Koopman, Phys. Fluids 10, 2091 (1967).ADSCrossRefGoogle Scholar
  5. [4]
    E.Wo Sucov, J.L. Pack, A.V. Phelps, and A.G. Englehardt, Phys. Fluids 10, 2035 (1967).ADSCrossRefGoogle Scholar
  6. [5]
    J.M. Dawson, Phys. Fluids 7, 481 (1964).Google Scholar
  7. [6]
    N.G. Basov and O.N. Krokhin, Sov. Phys.-JETP 19, 123 (1964).Google Scholar
  8. [7]
    W.J. Fader, Phys. Fluids 11, 2200 (1968).ADSCrossRefGoogle Scholar
  9. [8]
    R.G. Rehm, Phys. Fluids 13, 921 (1970).ADSCrossRefGoogle Scholar
  10. [9]
    D.A. Tidman, Phys. Fluids 10, 547 (1967).ADSCrossRefGoogle Scholar
  11. [10]
    D.A. Tidman, J. Geophys. Res. 72, 1799 (1967).ADSCrossRefGoogle Scholar
  12. [11]
    D.W. Koopman and D.A. Tidman, Phys. Rev. Letters 18, 533 (1967).ADSCrossRefGoogle Scholar
  13. [12]
    M. Lubin, Bull. Am. Phys. Soc. 13, 320 (1968).Google Scholar
  14. [13]
    D.W. Koopman and S. Segall, Bull. Am. Phys. Soc. 14, 1011 (1969).Google Scholar
  15. [14]
    B.J. Eastlund and W.C. Gough, The Fusion Torch-Closing the Cycle from Use to Re-use, USAEC Division of Research Publication WASH-1132 (U.S. Gov’t Printing Office, Wash., D.C., May, 1969).Google Scholar
  16. [15]
    R.C. Ajmera, D.W. Koopman, and H. Lashinsky, Bullo Am. Phys. Soc. 14, 1011 (1969).Google Scholar
  17. [16]
    S. Namba, P.H. Kim, T. Itoh, T. Arai, and H. Schwartz, Papers Inst, of Phys. and Chem. Res. (Tokyo) 60, 101 (1966).Google Scholar
  18. [17]
    H.J. Zwally and D.W. Koopman, Proc. VI International Conf. on the Physics of Electronic and Atomic Collisions, MIT Press (1969), p. 1025.Google Scholar
  19. [18]
    A.A. Vedenov, E.P. Velikhov and R.Z. Sagdeev, Sov. Phys.-Uspekhi 4, 332 (1961).ADSCrossRefGoogle Scholar
  20. [19]
    M.D. Gabovich and G.S. Kirichenko, Sov. Phys.-JETP 23, 785 (1966).ADSGoogle Scholar
  21. [20]
    T.E. Stringer, J. Nuclear Energy C6, 267 (1964).ADSCrossRefGoogle Scholar
  22. [21]
    I. Haber, D.A. Hammer, R.C. Davidson, J. Dawson, N.A. Krall, K. Papadopoulos and R. Shanny, Bull. Am. Phys. Soc. 15, 641 (1970).Google Scholar
  23. [22]
    K. Papadopoulos, private communication.Google Scholar
  24. [23]
    D. W. Koopman, Bull. Am. Phys. Soc. 15, 643 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • David W. Koopman
    • 1
  1. 1.Institute for Fluid Dynamics and Applied MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations