The Effects of Chlorinated Hydrocarbons on the Hepatic Monooxygenase System

  • David Kupfer


Monooxygenases, also referred to as mixed function oxidases, are enzymes which in the presence of an electron donor and molecular oxygen catalyze the incorporation of oxygen into aliphatic and aromatic substrates. The stoichiometry of this reaction can be described as follows:
$$AH + {O_2} + BH + {H^ + } \to AOH + B + {H_2}O$$
where AH is the substrate and BH is the electron donor.


Triamcinolone Acetonide Chlorinate Hydrocarbon Mixed Function Oxidase Monooxygenase System Cortisol Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, T. and D. Kupfer. 1966.. Effect of DDT on the metabolism and production rate of cortisol in the guinea pig. Toxicol. Appl. Pharmacol. 9: 40–43.PubMedCrossRefGoogle Scholar
  2. Bergenstal, D.M., R. Hertz, M.B. Lipsett and R.H. Moy. 1960. Chemotherapy of adrenocortical cancer with o,p’DDD. Ann. Int. Med. 53: 672–682.Google Scholar
  3. Conney, A.H. 1967. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 19: 317–366.PubMedGoogle Scholar
  4. Cueto, C. and J.H.U. Brown. 1958. Biological studies on an adrenocorticolytic agent and the isolation of the active components. Endocrinology 62: 334–339.PubMedCrossRefGoogle Scholar
  5. Fahim, M.S., J. Ishaq, D.G. Hall and R.L. Russell. 1970. Effect of DDT on uterine maintenance in rats. Fed. Proc. 29: 781.Google Scholar
  6. Gerboth, G. and U. Schwabe. 1964. Einfluss von gewebsgespeichertem DDT auf die Wirkung von Pharmaka. Arch. exp. Path. u. Pharmak. 246: 469–483.Google Scholar
  7. Ghazal, A., W. Koransky, J. Portig, H.W. Vohland and I. Klempau. 1964. Beschleunigung von Entgiftungsreaktionen durch verschiedene Insecticide. Arch. exp. Path. u. Pharmak. 249: 1–10.Google Scholar
  8. Greim, H., H. Remmer and J.B. Schenkman. 1967. Die Induktion. mikrosomaler Enzyme der Rattenleber. Arch. Pharmakol. u. exp. Pathol. 257: 278–279.Google Scholar
  9. Hart, L.G. and J.R. Fouts. 1963. Effects of acute and chronic DDT administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. Exptl. Biol. Med. 114: 388–392.Google Scholar
  10. Hart, L.G., R.W. Shultice and J.R. Fouts. 1963. Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Appl. Pharmacol. 5: 371–386.PubMedCrossRefGoogle Scholar
  11. Kuntzman, R. 1969. Drugs and enzyme induction. Ann. Rev. Pharmacol. 9: 21–36.Google Scholar
  12. Kuntzman, R., M. Jacobson, K. Schneidman and A.H. Conney. 1964. Similarities between oxidative drug-metabolizing enzymes and steroid hydroxylases in liver microsomes. J. Pharm. Exptl. Therap. 146: 280–285.Google Scholar
  13. Kuntzman, R., D. Lawrence and A.H. Conney. 1965. Michaelis constants for the hydroxylation of steroid hormones and drugs by rat liver microsomes. Mol. Pharmacol. 1: 163–167.PubMedGoogle Scholar
  14. Kupfer, D. 1968. Alteration in the magnitude of induction of tyrosine transaminase by glucocorticoids. The effects of phenobarbital, o,p’DDD and SKF 525A. Arch. Biochem. Biophys. 127: 200–206.PubMedCrossRefGoogle Scholar
  15. Kupfer, D. 1969. Influence of chlorinated hydrocarbons and organo-phosphate insecticides on metabolism of steroids. Ann. N.Y. Acad. Sci. 160: 244–253.PubMedCrossRefGoogle Scholar
  16. Kupfer, D., T. Balazs and D.A. Buyske. 1964. Stimulation by o,p’DDD of cortisol metabolism in the guinea pig. Life Sci., 3: 959–964.PubMedCrossRefGoogle Scholar
  17. Kupfer, D. and L.L. Bruggeman. 1966. Determination of enzymic demethylation of P chloro-N-methylaniline. Assay of aniline and 2. chloroaniline. Anal. Biochem. 17: 502–512.PubMedCrossRefGoogle Scholar
  18. Kupfer, D., L.L. Bruggeman and T. Munsell. 1969a. Studies on the occurrence of N-demethylase activity in adrenal and hepatic preparations from guinea pigs and rats. The effect of various substances on the magnitude of this activity. Arch. Biochem. Biophys. 129: 189–195.PubMedCrossRefGoogle Scholar
  19. Kupfer, D. and S. Orrenius. 1970. Interaction of drugs, steroids and fatty acids with liver-microsomal cytochrome P-450. Eur. J. Biochem. 14: 317–322.PubMedCrossRefGoogle Scholar
  20. Kupfer, D. and R. Partridge. 1970. 68-Hydroxylation of Triamcinolone Acetonide by a hepatic enzyme system. The effect of phenobarbital and 1-Benzyl-2-thio-5,6-dihydrouracil. Arch. Biochem. 140: 23–28.PubMedCrossRefGoogle Scholar
  21. Kupfer, D., R. Partridge and T. Munsell Jones. 1969b. Alteration in the magnitude of induction of tyrosine transaminase by glucocorticoids. H. Effects of phenobarbital, o,p’DDD and SKF 525A on metabolism of triamcinolone acetonide. Arch. Biochem. Biophys. 131: 57–66.PubMedCrossRefGoogle Scholar
  22. Levin, W., R.M. Welch and A.H. Conney. 1969. Inhibitory effect of phenobarbital pretreatment on the androgen-induced increase in seminal vesicle weight in the rat. Steroids 13: 155–161.PubMedCrossRefGoogle Scholar
  23. Lin, E.C.C. and W.E. Knox. 1957. Adaptation of the rat liver tyrosine-o:-ketoglutarate transaminase. Biochim. Biophys. Acta 26: 85–88.PubMedCrossRefGoogle Scholar
  24. Sereni, F., F.T. Kenney and N. Kretchmer. 1959. Factors influencing the development of tyrosine-a-ketoglutarate transaminase activity in rat liver. J. Biol. Chem. 234: 609–612.PubMedGoogle Scholar
  25. Tephly, T.R. and G.J. Mannering. 1968. Inhibition of drug metabolism. V. Inhibition of drug metabolism by steroids. Mol. Pharmacol. 4: 10–14.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • David Kupfer
    • 1
  1. 1.Lederle LaboratoriesDivision of American Cyanamid CompanyPearl RiverUSA

Personalised recommendations