Advertisement

The Response of Escherichia Coli to Fatty Acid Supplements and the Regulation of Membrane Lipid Synthesis

  • Salih J. Wakil
  • M. Esfahani

Abstract

Despite many years of research, the exact nature of the molecular organization of the biological membrane is still a matter of much discussion and speculation. Several models have been proposed for membrane structure (Danielli and Dayson, 1935; Robertson, 1966; Benson, 1968; Green et al, 1967), each of which is based primarily on what is assumed for its function, and none of which has met a universal acceptability. However, what is generally agreed on is that the biomembrane consists of proteins, lipids, and water, and that lipid-protein interactions determine membrane function. A possible approach to the understanding of the structural requirements for the lipids and proteins which are essential for the expression of membrane function is alteration of these constituents and investigation into the effect of such alterations on membrane properties. To this purpose, alterations of the lipid component of the membrane have sounded promising (Silbert et al, 1968; McElhaney and Tourtellotte, 1969; Steim et al, 1969).

Keywords

Fatty Acid Composition Unsaturated Fatty Acid Saturated Fatty Acid Elaidic Acid Fatty Acid Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, G. 1968. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J. Bacteriol. 95: 833–843.PubMedGoogle Scholar
  2. Benson, A.A. 1968. The cell membrane. A lipoprotein monolayer. p. 190–202. In L. Bolis and P.A. Pethica [Ed.], Membrane models and the formation of biological membranes. North-Holland, Amsterdam.Google Scholar
  3. Burton, A.J. and H.E. Carter. 1964. Purification and characterization of the lipid A component of the lipopolysaccharides from Escherichia coli. Biochemistry 3: 411–418.PubMedCrossRefGoogle Scholar
  4. Chapman, D. 1966. Liquid crystals and cell membranes. Ann. N.Y. Acad. Sci. 137: 745–754.PubMedCrossRefGoogle Scholar
  5. Chapman, D., N.F. Owens and D.A. Walker. 1966. Physical studies of phospholipids. II. Monolayer studies of some synthetic 2,3-diacyl-DL-phosphatidylethanolamines and phosphatidylcholines containing trans double bonds. Biochim. Biophys. Acta 120: 148–155.PubMedCrossRefGoogle Scholar
  6. Chapman, D., R.M. Williams and B.D. Ladbrooke. 1967. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines(Lecithin). Chem. Phys. Lipids 1: 445–475.CrossRefGoogle Scholar
  7. Cronan, T.E., Jr. 1968. Phospholipid alterations during growth of Escherichia coli. J. Bacteriol. 95: 2054–2061.PubMedGoogle Scholar
  8. van Deenen, L.L.M. 1966. Some structural and dynamic aspects of lipids in biological membranes. Ann. N.Y. Acad. Sci. 137: 717–730.PubMedCrossRefGoogle Scholar
  9. van Deenen, L.L.M., U.M.T. Houtsmuller, G.H. deHaas and E. Mulder. 1962. Monomolecular layers of synthetic phosphatides. J. Pharm. Pharmacol. 14: 429–444.PubMedCrossRefGoogle Scholar
  10. Esfahani, M., E.M. Barnes, Jr. and S.J. Wakil. 1969. Control of fatty acid composition in phospholipids of Escherichia coli: response to fatty acid supplements in a fatty acid auxotroph. Proc. Nat. Acad. Sci. ( US ) 64: 1057–1064.Google Scholar
  11. Esfahani, M., E.M. Barnes, Jr. and S.J. Wakil. 1969. Control of fatty acid composition in phospholipids of Escherichia coli: response to fatty acid supplements in a fatty acid auxotroph. Proc. Nat. Acad. Sci. ( US ) 64: 1057–1064.Google Scholar
  12. Fox, C.F. and E.P. Kennedy. 1965. Specific labeling and partial purification of the M protein, a component of the 13-galacto-side transport system of Escherichia coli. Proc. Nat. Acad. Sci. ( US ) 54: 891–899.Google Scholar
  13. Ganeson, A.T. and J. Lederberg. 1965. A cell-membrane bound fraction of bacterial DNA. Biochem. Biophys. Res. Comm. 18: 824–835.Google Scholar
  14. van Golde, L.M.G. and L.L.M. van Deenen. 1966. The effect of dietary fat on the molecular species of lecithin from rat liver. Biochim. Biophys. Acta 125: 496–509.Google Scholar
  15. Green, D.E., D.W. Allman, E. Bachmann, H. Baum, K. Kopazyk, E.F. Korman, S. Lipton, D.H. MacLennan, D.G. McConnell, J.F. Perdue, J.S. Rieske and A. Tzagoloff. 1967. Formation of membranes by repeating units. Arch. Biochem. Biophys. 119: 312–335.Google Scholar
  16. Henderson, T.O. and J.J. McNeil. 1966. The control of fatty acid synthesis in Lactobacillus plantarum. Biochem. Biophys. Res. Comm. 25: 662–669.Google Scholar
  17. Johnston, P.V. and B.I. Roots. 1964. Brain lipid fatty acids and temperature acclimation. Comp. Biochem. Physiol. 11: 303–309.Google Scholar
  18. Jacob, F., S. Brenner and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329–347.Google Scholar
  19. Kaneshiro, T. and A.G. Marr. 1961. Cis-9,10-Methylene hexadecanoic acid from the phospholipids of Escherichia coli. J. Biol. Chem. 236: 2615–2619.Google Scholar
  20. Kundig, W. and S. Roseman. 1969. Further studies on bacterial permeases. Fed. Proceedings 28: 463.Google Scholar
  21. Lennarz, W.J. 1970. Bacterial lipids, p. 155–184. In S.J. Wakil [Ed], Lipid metabolism, Academic Press, New York.Google Scholar
  22. Marr, A.G. 1960. Localization of enzymes in bacteria. p. 433–468. In I.C. Gunsalus and R.Y. Stainier [Ed], The bacteria, Volume I, Academic Press, New York.Google Scholar
  23. Marr, A.G. and J.L. Ingraham. 1962. Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84: 1260–1267.PubMedGoogle Scholar
  24. McElhaney, R.N. and M.E. Tourtellotte. 1969. Mycoplasma membrane lipids: variations in fatty acid composition. Science 164: 433–434.PubMedCrossRefGoogle Scholar
  25. Meyer, F. and K. Bloch. 1963. Metabolism of stearolic acid in yeast. J. Biol. Chem. 238: 2654–2659.Google Scholar
  26. Milner, L.S. and H.R. Kaback. 1970. The role of phosphatidylglycerol in the vectorial phosphorylation of sugar by isolated bacterial membrane preparations. Proc. Nat. Acad. Sci. ( US ) 65: 683–690.Google Scholar
  27. Mindich, L. 1970. Membrane synthesis in Bacillus subtilis. I. Isolation and properties of strains bearing mutations in glycerol metabolism. J. Mol. Biol. 49: 415–432.Google Scholar
  28. Norris, A.T., S. Matsumara and K. Block. 1964. Fatty acid synthetase and ß-hydroxydecanoyl coenzyme A dehydrase from Escherichia coli. J. Biol. Chem. 239: 3653–3662.Google Scholar
  29. Okuyama, H. 1969. Phospholipid metabolism in Escherichia coli after a shift in temperature. Biochim. Biophys. Acta 176: 125–134.Google Scholar
  30. Overath, P., G. Pauli and H.U. Schairer. 1969. Fatty acid degradation in Escherichia coli. An inducible acyl-Co A synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. European J. Biochem. 7: 559–574.Google Scholar
  31. Pigulewski, G.B. 1915. Difference in the composition of oils from species of the same family (in Russian). Zh. Russ. Fiz-Khim. Obshehest. 47: 393–405.Google Scholar
  32. Pugh, E.L., F. Sauer, M.B. Waite, R.E. Toomey and S.J. Wakil. 1966.Google Scholar
  33. Studies on the mechanism of fatty acid synthesis. XIII. The role of ß-hydroxy acids in the synthesis of palmitate and cisvaccenate by the Escherichia coli enzyme system. J. Biol. Chem. 241, 2635–2643.Google Scholar
  34. Robertson, J.D. 1966. Design principles of the unit membrane. p. 357408. In G.E.W. Wolstenholme and M. O’Conner [Ed], Principles of biomolecular organization, J. and A. Churchill, London.Google Scholar
  35. Salton, M.R.J. 1967. Structure and function of bacterial cell membranes. Ann. Rev. Microbiol. 21: 417–442.CrossRefGoogle Scholar
  36. Schairer, H.U. and P. Overath. 1969. Lipids containing trans-unsaturated fatty acids change the temperature characteristics of thiomethylgalactoside accumulation in Escherichia coli. J. Mol. Biol. 44: 209–214.PubMedCrossRefGoogle Scholar
  37. Silbert, D.F., F. Ruch and P.R. Vagelos. 1968. Fatty acid replacements in a fatty acid auxotroph of Escherichia coli. J. Bacteriol. 95: 1658–1665.PubMedGoogle Scholar
  38. Steim, J.M., M.E. Tourtellotte, J.C. Reinert, R.N. McElhaney and R.L. Rader. 1969. Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc. Nat. Acad. Sci. ( US ) 63: 104–109.Google Scholar
  39. Terroine, E.F., C. Hatterer and P. Roehring. 1935. Les acides gras des phosphatides chez les animaux poikilothermes, les vegetaux superieurs et les microorganismes. Bull. Soc. Chin. Biol. ( Paris ) 12: 682–702.Google Scholar
  40. Weeks, G., M. Shapiro, R.O. Burns and S.J. Wakil. 1969. Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J. Bacteriol. 97: 827–836.PubMedGoogle Scholar
  41. Weeks, G. and S.J. Wakil. 1970. Studies on the control of fatty acid metabolism. II. The inhibition of fatty acid synthesis in Lactobacillus plantarum by exogenous fatty acid. J. Biol. Chem. 245: 1913–1921.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Salih J. Wakil
    • 1
  • M. Esfahani
    • 1
  1. 1.Biochemistry DepartmentDuke University Medical CenterDurhamUSA

Personalised recommendations