Advertisement

Transport in Composite Reverse Osmosis Membranes

  • H. K. Lonsdale
  • R. L. Riley
  • C. R. Lyons
  • D. P. CarosellaJr.

Abstract

Reverse osmosis desalination membranes have been prepared by laminating a very thin film of a semipermeable material to a finely porous support membrane. Film thicknesses are typically 1000 Å. Structurally, these membranes are similar to the asymmetric cellulose acetate membranes first made by Loeb and Sourirajan. The composite membranes offer a choice of materials from which to prepare the desalination film and the porous support. Composites made by this procedure exhibit stable single-pass desalination of seawater with typical water fluxes of 5 × 10−4 g/cm2-sec (10 gal/ ft2-day). The water flux through the composite with a given difference in water activity depends on the water permeability and the thickness of the thin film and the characteristics of the pores in the surface of the support. Water permeabilities have been measured in direct osmosis. When the distance between pores is large compared with the thickness of the thin film, significant reduction in flux can occur. The relationship between film thickness, the porosity and pore size of the support, and this flux reduction has been calculated, and the calculations compare favorably with observations made on composite membranes.

Keywords

Water Flux Reverse Osmosis Composite Membrane Reverse Osmosis Membrane Support Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loeb, S., and S. Sourirajan, Advan. Chem. Series 38, 117 (1963).Google Scholar
  2. 2.
    Merten, U. (ed.), Desalination by Reverse Osmosis The M.I.T. Press, Cambridge, 1966.Google Scholar
  3. 3.
    Riley, R. L., J. O. Gardner, and U. Merten, Science 143, 801 (1964).Google Scholar
  4. 4.
    Riley, R. L., U. Merten, and J. O. Gardner, Desalination 1, 30 (1966).CrossRefGoogle Scholar
  5. 5.
    Lonsdale, H. K., U. Merten, and R. L. Riley, J. Appl. Polymer Sci. 9, 1341 (1965).CrossRefGoogle Scholar
  6. 6.
    Riley, R. L., H. K. Lonsdale, C. R. Lyons, and U. Merten, J. Appl. Polymer Sci. 11, 2143 (1967).Google Scholar
  7. 7.
    Riley, R. L., H. K. Lonsdale, L. D. LaGrange, and C. R. Lyons, “Development of Ultrathin Membranes,” U.S. Department of the Interior, Office of Saline Water, Research and Development Progress Report No. 386, Gulf General Atomic Incorporated, May 1968.Google Scholar
  8. 8.
    Lonsdale, H. K., R. L. Riley, L. D. LaGrange, C. R. Lyons, A. S. Douglas, and U. Merten, “Research on Improved Reverse Osmosis Membranes,” U.S. Department of the Interior, Office of Saline Water, Research and Development Progress Report No. 484, Gulf General Atomic Incorporated, December 1969.Google Scholar
  9. 9.
    Zsigmondy, R., Z. Angew. Chem. 30, 398 (1926).Google Scholar
  10. 10.
    Lonsdale, H. K., R. L. Riley, C. E. Milstead, L. D. LaGrange, A. S. Douglas, and S. B. Sachs, “Research on Improved Reverse Osmosis Membranes,” U.S. Department of the Interior, Office of Saline Water, Final Report under Contract 14–01–0001–1778, Gulf General Atomic Incorporated, April 1970.Google Scholar
  11. 11.
    Merten, U., H. K. Lonsdale, and R. L. Riley, Ind. Eng. Chem. Fundamentals 3, 210 (1964).Google Scholar
  12. 12.
    Daynes, H., Proc. Roy. Soc. (London) A97, 286 (1920).Google Scholar
  13. 13.
    Levich, V. G., Physicochemical Hydrodynamics Prentice Hall, Englewood Cliffs, 1962.Google Scholar
  14. 14.
    Lonsdale, H. K., B. P. Cross, F. M. Graber, and C. E. Milstead, “Permeability of Cellulose Acetate Membranes to Selected Solutes,” J. Macromol. Sci. Part B (to be published).Google Scholar
  15. 15.
    Clark, S. S., and J. F. Petersen, “TAC2D. A General Two-Dimensional Heat Transfer Computer Code - Mathematical Formulations and Programmer’s Guide,” USAEC Report GA-9262, Gulf General Atomic Incorporated, September 1969.CrossRefGoogle Scholar
  16. 16.
    Petersen, J. F., “TAC2D. A General Purpose Two-Dimensional Heat Transfer Computer Code - User’s Manual,” USAEC Report GA-8868, Gulf General Atomic Incorporated, September 1969.Google Scholar
  17. 17.
    Tien, H. T., and H. P. Ting, Jr., J. Colloid Interface Sci. 27, 702 (1968).CrossRefGoogle Scholar
  18. 18.
    Zwolinski, B. J., H. Eyring, and C. E. Reese, J. Phys. Chem. 53, 1426 (1949).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • H. K. Lonsdale
    • 1
  • R. L. Riley
    • 1
  • C. R. Lyons
    • 1
  • D. P. CarosellaJr.
    • 1
  1. 1.Gulf General AtomicSan DiegoUSA

Personalised recommendations