Membranes for Pressure Permeation

  • Henry Z. Friedlander
  • L. M. Litz

Abstract

Molecular separations of gases by passage through a thin, dense membrane have been known for at least 140 years.(1) Even the desalination of water by passing it through a membrane under pressure with the exclusion of dissolved salts was known and named reverse osmosis 45 years ago.(2) Yet it was not until the 1960’s that the latter became an important, practical process. For one thing, identification of water supply as a vital problem requiring public support for alternative sources was necessary. Following this awareness came seven-digit investment in laboratory research by public agencies such as the State of California and the U. S. Department of Interior which led among other advances to the asymmetric membrane.(3,3a) This development cut the area of membrane surface required and hence the cost of an installation for a given volume processed to one-hundredth of that previously thought necessary. With the arrival of submicron,thin membranes a new unit operation was born.(4,5,6,7)

Keywords

Helium Hydrocarbon Polystyrene Bentonite Methacrylate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. H. Mitchell, J. Roy. Inst. 2, 101, 307 (1831) as quoted by Stern, ref. 93.Google Scholar
  2. 2.
    A. G. Horvath, U.S. Patent 1,825,631 (Sept. 29, 1931) filed Dec. 9, 1926.Google Scholar
  3. 3.
    S. Loeb and S. Sourirajan, UCLA Engineering Report 60–60 (1960); U. S. Patents 3,133,132; 3,133,137 (1964).Google Scholar
  4. 3a.
    The term “asymmetric membrane” was coined by one of the present authors (i F) in 1964 as a less ambiguous and more proper term than the then-used anisotropie membrane, which implies water flow in the plane of the membrane. In the ionophoretic mode of electrodialysis, water can flow in the plane of the membrane.Google Scholar
  5. 4.
    S. A. Stern, U. S. Patent 3,332,216 (1967).Google Scholar
  6. 5.
    F. L. Harris, Kaiser Engineers “Engineering and Economic Evaluation Study of Reverse Osmosis” Oakland, Calif. April 1968.Google Scholar
  7. 6.
    J. D. Bashaw and T. A. Orofino, “Hollow Fibers for Reverse Osmosis,” Second OSW Symposium on Reverse Osmosis, Miami, Fla., April, 1969. (Monsanto-Chemstrand, Durham, N. C.).Google Scholar
  8. 7.
    “Saline Water Conversion Reports” of the Office of Saline Water, U. S. Department of Interior.Google Scholar
  9. 8.
    R&D Reports of the Office of Saline Water.Google Scholar
  10. 9.
    U. Merten, Editor, “Desalination by Reverse Osmosis,” MIT Press, Cambridge, Mass., 1966.Google Scholar
  11. 10.
    R. N. Rickles, “Membranes, Technology and Economics”, Noyes Development Co., Park Ridge, N. J., 1967.Google Scholar
  12. 11.
    C. E. Reid and E. J. Breton, J. Appl. Polymer Sci. 1, 133 (1959).CrossRefGoogle Scholar
  13. 12.
    C. J. Malin, M. E. Rowley, and N. G. Baumer, U.S. Patent 3,342, 728 (1967).Google Scholar
  14. 13.
    A. Turbak, editor “Membranes from Cellulose and Cellulose Derivatives” 157th National Meeting, American Chemical Society, Cellulose, Wood, and Fiber Chemistry Division, April 16–17, 1969. Wiley-Interscience Applied Polymer Symposium No. 13, New York, 1970.Google Scholar
  15. l4.
    Second Reverse Osmosis Symposium of the OSW, Miami, Fla. April 20–25, 1969.Google Scholar
  16. 15.
    H. E. Podall, AIChE Meeting, San Juan, P. R., May 1970.Google Scholar
  17. 16.
    B. Baum, S. Margosiak and W. Holley at ref. 14. (DeBell and Richardson); OSW Conv. Report 1969–70, p. 92.Google Scholar
  18. 17.
    OSW Saline Water Conversion Report 1969–70, p. 115.Google Scholar
  19. 18.
    C. W. Saltonstall, PURAQUA Conference, Rome, Feb. 1968 and refs. 3 and 15 (Aerojet-General). OSW Cony. Report 1969–70, pp. 91 & 96.Google Scholar
  20. 19.
    C. W. Saltonstall and P. A. Cantor, OSW Cony. Report 1969–70, pp. 91 & 95; ibid, 1968 p. 110.Google Scholar
  21. 20.
    S. Manjikian, ref. 14, (Universal Water); OSW Conv. Report 1969–70, p. 96.Google Scholar
  22. 21.
    V. T. Stannett and H. B. Hopfenberg, OSW Cony. Report 1969–70, pp. 98–101.Google Scholar
  23. 22.
    M. E. Cohen, B. M. Riggleman, and P. D. Drechsel, ref. 13, p. 47.Google Scholar
  24. 23.
    L. T. Rozelle, J. E. Cadotte, and D. J. McClure, ref. 13, p. 61 and references cited therein p. 71; OSW Cony. Report 1969–70, p. 117.Google Scholar
  25. 24.
    J. E. Cadotte, L. T. Rozelle, R. J. Petersen, and P.S. Francis, ref. 13, 76.Google Scholar
  26. 25.
    R. L. Riley, H. K. Lonsdale, C. R. Lyons, and U. Fierten, ref. 14, (Gulf-General) R. L. Riley, H. K. Lonsdale, C. R. Lyons, and U. Fierten, OSW Cony. Report 1969–70, p. 93.Google Scholar
  27. 26.
    R. Bloch, O. Kedem, and D. Vofsi, Polymer Letters 3, 965 (1965).CrossRefGoogle Scholar
  28. 27.
    A. S. Hoffman, M. Modell, and P. Pan, J. Appl. Polymer Sci. 13, 2223 (1969) A. S. Hoffman, M. Modell, and P. Pan, ibid, 14, 285 (1970); cf. ibid, 14, 1339 (1970).Google Scholar
  29. 28.
    A. Peterlin and H. Yasuda, OSW Cony. Report 1967, p. 131.Google Scholar
  30. 29.
    A. Sharples, G. Maconochie, and G. Thomason, ref. 14; OSW Cony. Report 1969–70, p. 102 (A. D. Little, Scotland).Google Scholar
  31. 30.
    OSW Cony. Report 1969–70, p. 104.Google Scholar
  32. 31.
    C. W. Saltonstall, et. al., OSW Conv. Report 1968, p. 123 (Aerojet-General).Google Scholar
  33. 32.
    OSW Cony-. Report 1969–70, pp. 444–448 (General Electric).Google Scholar
  34. 33.
    OSW Conv. Report 1969–70, pp. 5–8 (Shell & Research Triangle Institute).Google Scholar
  35. 34.
    OSW Cony. Report 1969–70, p. 27 (Westinghouse).Google Scholar
  36. 35.
    The Desalination Report, Vol. 6, No. 19; May 7, 1970, Washington, D. C.Google Scholar
  37. 36.
    A. E. Marcinkowsky, K. A. Kraus, H. O. Phillips, J.S. Johnson, and A. J. Shor, J. Amer. Chem. Soc., 88, 5744 (1966)CrossRefGoogle Scholar
  38. A. E. Marcinkowsky, K. A. Kraus, H. O. Phillips, J.S. Johnson, and A. J. Shor, Desalination 1, 225 (1966).CrossRefGoogle Scholar
  39. 37.
    K. A. Kraus, A. J. Shor, and J. S. Johnson, Desalination 2, 243 (1967).CrossRefGoogle Scholar
  40. 38.
    A. J. Shor, K. A. Kraus, W. T. Smith, and J. S. Johnson, J. Phys. Chem. 72, 2200 (1968).CrossRefGoogle Scholar
  41. 39.
    OSW Conv. Report 1969–70, pp. 107–111.Google Scholar
  42. 40.
    J. S. Johnson, K. A. Kraus, A. E. Marchinkowsky, H. O. Phillips, and A. J. Shor, U. S. Patent 3,449,245, June 1969.Google Scholar
  43. 41.
    J. R. Fryer, J. L. Hutchison, and R. Peterson, Nature 226, 149, (1970).PubMedCrossRefGoogle Scholar
  44. 42.
    E. R. Brownscombe, H. F. Dunlap, L. R. Kern, and T. K. Perkins, U. S. Patent 3,283,813, November 1966 (filed September 1965), continuation-in-part of an application of June 1962).Google Scholar
  45. 43.
    E. R. Brownscombe and L. R. Kern, U. S. Patent 3,331,772, July 1967 (filed August 1965, continuation-in-part of an application of June 1962).Google Scholar
  46. 44.
    Private communication from Dr. W. K. Chen.Google Scholar
  47. 45.
    H. C. Savage, N. E. Bolton, H. O. Phillips, K. A. Kraus, and J. S. Johnson Water and Sewage Works, p. 102, March 1969.Google Scholar
  48. 46.
    OSW Cony. Report 1969–1970, pp. 111–113.Google Scholar
  49. 47.
    W. L. Short, R. T. Skrinde, and D. G. Newton, p. 188 in J. E. Flinn, editor “Membrane Science and Technology,” Battelle Symposium, October 20–21, 1969. Plenum Press New York 1970.Google Scholar
  50. 48.
    OSW Cony. Report 1969–1970, pp. 471–474.Google Scholar
  51. 49.
    S. Sourirajan and T. S. Govindan, Ind. Eng. Chem. Proc. Design Devel, 5, 422, (1966).CrossRefGoogle Scholar
  52. 50.
    R. Blunk, Report 64–28 UCLA Water Resources Center, June 1964 C. A. 63, 2747d (1965).Google Scholar
  53. 51.
    S. Sourirajan Ind. & Eng. Prod. R&D 4, 201 (1965).CrossRefGoogle Scholar
  54. 52.
    H. K. Lonsdale, U. Merten, and M. Tagami, J. Appl. Polymer Sci. 11, 1807 (1967).CrossRefGoogle Scholar
  55. 53.
    Suggested as a standard compound for waste water treatment by one of the authors in 1964.Google Scholar
  56. 54.
    D. G. Stephan and R. B. Schaffer, J. Water Poll. Control Fed. 42, 399 (1970).Google Scholar
  57. 55.
    J. G. Mahony, M. E. Rowley, and L. E. West, p. 203 in J. E. Flinn, editor “Membrane Science and Technology” Battelle Symposium October 20–21, 1969. Plenum Press, New York 1970. This book also treats complex organic mixtures generated by other industries such as food, pharmaceutical, paper, etc.Google Scholar
  58. 56.
    S. Sourirajan and A. F. Sirianni,Ind. & Eng. Prod. R&D 5, 30 (1966).CrossRefGoogle Scholar
  59. 57.
    S. Sourirajan, Ind. & Eng. Chem. Fund. 2, 51 (1963).CrossRefGoogle Scholar
  60. 58.
    H. B. Hopfenberg, p. 16, in J. E. Flinn, editor “Membrane Science and Technology” Battelle Symposium, October 20–21, 1969. Plenum Press, New York, 1970Google Scholar
  61. H. B. Hopfenberg and H. L. Frisch, Polymer Letters 7, 405 (1969).CrossRefGoogle Scholar
  62. 59.
    J. Crank and G. S. Park, editors, “Diffusion in Polymers” Academic Press, New York, 1968.Google Scholar
  63. 60.
    E. C. Martin, R. C. Binning, L. M. Adams, and R. J. Lee, U.S. Patent 3,140,256 (1964).Google Scholar
  64. R.C. Binning and J. M. Stuckey, U.S. Patent 2,958,657 (1960).Google Scholar
  65. 61.
    R. J. Lee and J. F. Jennings, U.S. Patent 2,960,462 (1960).Google Scholar
  66. 62.
    J. M. Stuckey, U. S. Patent 3,043,891 (1962).Google Scholar
  67. 63.
    R. C. Binning and R. J. Lee, Div. Pet. Chem. (ACS) 6, No. 2 A-17 (1961).Google Scholar
  68. 64.
    R. F. Sweeney and A. Rose, Ind. Eng. Chem. Prod. R&D 4,248 (1965).CrossRefGoogle Scholar
  69. 65.
    V. N. Schrodt, R. F. Sweeney, and A. Rose, Div. Pet. Chem. (ACS) 6, No. 2 A-29 (1961).Google Scholar
  70. 66.
    A. S. Michaels, R. F. Baddour, H. J. Bixler, and C. Y. Choo, Div. Pet. Chem. (ACS) 6, No. 2 A-35 (1961)Google Scholar
  71. A. S. Michaels, R. F. Baddour, H. J. Bixler, and C. Y. Choo, Ind. Eng. Chem. Process R&D 1, 14 (1962)CrossRefGoogle Scholar
  72. A. S. Michaels, R. F. Baddour, H. J. Bixler, and C. Y. Choo, U.S. Patent 3,299,157 (1967).Google Scholar
  73. 67.
    H. J. Bixler and A. S. Michaels, Preprint 32nd AIChE, Pittsburgh, May 1964.Google Scholar
  74. 68.
    R. D. Siegel and R. W. Coughlin, Nature 226, 938 (1970); C&E News, p. 37, May 18, 1970.Google Scholar
  75. 69.
    K. Kammermeyer and D. H. Hagerbaumer, AIChE, 1, 215 (1955).CrossRefGoogle Scholar
  76. 70.
    M. Kucharski and J. Stelmaszek, International Chem. Eng. 7, 618 (1967).Google Scholar
  77. 71.
    D. R. Paul and D. M. Ebra-Lima preprint 23f AIChE Meeting, Washington, D.C., November 1969.Google Scholar
  78. 72.
    A. S. Michaels, pp. 157–195, “Membrane Processes for Industry” Southern Research Institute, May 1966, Birmingham, Ala.Google Scholar
  79. 73.
    S. Sourirajan, Nature 203, 1348 (1964).CrossRefGoogle Scholar
  80. 74.
    J. Kopecek and S. Sourirajan, Ind. Eng. Chem. Process Des. Dev. 9, 5 (1970).CrossRefGoogle Scholar
  81. 75.
    J. L. Gardon, “Cohesive-Energy Density” Encyclop. of Polymer Science, Vol. 3, Wiley, New York, 1965.Google Scholar
  82. 76.
    P. Margis, German Patent 17,981 (August 7, 1881).Google Scholar
  83. 77.
    M. Herzog, U. S. Patent 307,041 (1884).Google Scholar
  84. 78.
    S. Weller and W. A. Steiner, J. Appl. Phys. 21, 279 (1950).CrossRefGoogle Scholar
  85. 79.
    S. Weller and W. A. Steiner, Chem. Eng. Prog. 46, 585 (1950).Google Scholar
  86. 80.
    S. Weller, U. S. Patent, 2,540,152 (1951).Google Scholar
  87. 81.
    D. W. Brubaker and K. Kammermeyer, Ind. Eng. Chem.,46, 733 (1954).CrossRefGoogle Scholar
  88. 82.
    K. Kammermeyer, U.S. Patent 2,966,235 (1960).Google Scholar
  89. 83.
    K. Kammermeyer, Ind. Eng. Chem. 49, 1685 (1957).CrossRefGoogle Scholar
  90. 84.
    S. A. Stern, T. F. Sinclair, P. J. Gareis, N. P. Vahldieck, and P. H. Mohr, Ind. Eng. Chem., 57, 49 (1965).CrossRefGoogle Scholar
  91. 85.
    R.B. McBride and D. L. McKinley, AIChE 55th Meeting, Feb. 1965.Google Scholar
  92. 86.
    V. Stannett and M. Szwarc, J. Polymer Sci., 16, 89 (1955).CrossRefGoogle Scholar
  93. 87.
    C. E. Rogers, J. A. Meyer, V. Stannett, and M. Szwarc, TAPPI 39, 741 (1956).Google Scholar
  94. 88.
    “Permselective Membranes,” Bulletin 8685A, The General Electric Co., Schenectady, New York, February 1970; data sheets August 1970.Google Scholar
  95. 89.
    U. Merten, U.S. Patent 3,415,038 (1968)Google Scholar
  96. U. Merten, Canadian Patent 830, 832 (1969).Google Scholar
  97. 90.
    J. P. Agrawal and S. Sourirajan, J. Appl. Polymer Sci., 14, 1303 (1970).CrossRefGoogle Scholar
  98. 91.
    P. K. Gantzel and U. Merten, Ind. Eng. Chem. Process Lev., 9, 331 (1970).CrossRefGoogle Scholar
  99. 92.
    ’Permasep’ Permeator, duPont Co., Wilmington, Del. February 1970.Google Scholar
  100. 93.
    S. A. Stern,“Gas Permeation Processes’, in S. Loeb and R. Lacey, editors ”Industrial Processing with Membranes“, Plenum Press, New York, 1970.Google Scholar
  101. 94.
    H. Z. Friedlander and F-M Wang, unpublished data, 1968.Google Scholar
  102. 95.
    W. L. Robb and D. L. Reinhard, U.S. Patent 3,335,545 (1967).Google Scholar
  103. 96.
    R. Bloch in J. E. Flinn, editor “Membrane Science and Technology” Plenum Press, New York, 1970.Google Scholar
  104. 97.
    W. J. Ward, U. S. Patent 3,503,186 (1970).Google Scholar
  105. 98.
    W. J. Ward and W. L. Robb, Science 156, 1481 (1967); U.S. Patent 3,396,510 (1968).Google Scholar
  106. 99.
    H. Z. Friedlander, “Membranes” Encyclopedia of Polymer Science, Vol. 8, Wiley, New York, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Henry Z. Friedlander
    • 1
  • L. M. Litz
    • 1
  1. 1.Union Carbide Research InstituteTarrytownUSA

Personalised recommendations