Transport Phenomena in Natural and Synthetic Membranes

  • S. Roy Caplan


Although the differences between natural and synthetic membranes are as yet far more numerous than their similarities, the relationship of structure to function in certain instances is strikingly parallel. In principle there seems no reason why some of the specific functions of natural membranes should not eventually be emulated to great advantage on an engineering scale, and indeed there are encouraging indications that the initial steps have been taken in this direction. The most important general property of natural membranes is that they function as “active” elements (to use electrical network terminology). The transport of a given species is frequently driven by an input of metabolic energy, and in many cases the flow may be non-conservative—i.e., reaction and diffusion occur simultaneously within the membrane. In contrast, most synthetic membranes function as “passive” elements (this is true of the numerous types which have been used in purely physico-chemical studies, as well as those developed for specific purposes such as desalination, separations technology, or biomedical engineering). The permeability characteristics of these membranes are the only parameters of significance; no coupling to chemical reaction occurs and transport across them is always conservative. With one or two notable exceptions, moreover, they do not approach the extraordinary selectivity of natural membranes.


Frog Skin Natural Membrane Synthetic Membrane Active Transport System Hydrostatic Pressure Gradient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mueller, P., Rudin, D.O., Ti Tien, H., and Westcott, W.C.: Nature 194: 979 (1962).PubMedCrossRefGoogle Scholar
  2. 2.
    Gorter, E., and Grendel, F.: J. Exp. Med. 41: 439 (1925).PubMedCrossRefGoogle Scholar
  3. 3.
    Tien, H.T., and Diana, A.L.: Chem. Phys. Lipids 2: 55 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Danielli, J.F., and Dayson, H.: J. Cell. Comp. Physiol. 5: 495 (1935).CrossRefGoogle Scholar
  5. 5.
    Hanai, T., Haydon, D.A., and Taylor, J.: Proc. Roy. Soc. A. 281: 377 (1964).CrossRefGoogle Scholar
  6. 6.
    Huang, C., and Thompson, T.E.: J. Mol. Biol. 15: 539 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    Hanai, T., Haydon, D.A., and Taylor, J.: J. Theoret. Biol. 9: 433 (1965).CrossRefGoogle Scholar
  8. 8.
    Mueller, P., and Rudin, D.O.: Biochem. Biophys. Res. Commun. 26: 398 (1967).PubMedCrossRefGoogle Scholar
  9. 9.
    Lev, A.A., and Buzhinsky, E.P.: Cytology 9: 102 (1967).Google Scholar
  10. 10.
    Mueller, P., and Rudin, D.O.: Nature 213: 603 (1967).PubMedCrossRefGoogle Scholar
  11. 11.
    Nachmansohn, D.: Science 168: 1059 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    Benson, A.A.: J. Am. Oil Chem. Soc. 43: 265 (1966).PubMedCrossRefGoogle Scholar
  13. 13.
    Kennedy, E.P.: In The Neurosciences, G.C. Quarton, T. Melnechuk, and F.O. Schmitt, Eds. Rockefeller University Press, New York, 1967, p. 271.Google Scholar
  14. 14.
    Rothfield, L. and Finkelstein, A.: Ann. Rev. Biochem. 37: 463 (1968).PubMedCrossRefGoogle Scholar
  15. 15.
    Lucy, J.A.: J. Theoret. Biol. 7: 360 (1964).CrossRefGoogle Scholar
  16. 16.
    Lucy, J.A.: Brit. Med. Bull. 24: 127 (1968).PubMedGoogle Scholar
  17. 17.
    Kavanau, J.L.: Nature 198: 525 (1963).PubMedCrossRefGoogle Scholar
  18. 18.
    Kavanau, J L.: Structure and Function in Biological Membranes, Vols. I and II. Holden-Day, San Francisco, 1965.Google Scholar
  19. 19.
    Lehninger, A.L.: In Neurosciences Research Symposium Summaries, F.O. Schmitt and T. Melnechuk, Eds., Vol. I. M.I.T. Press, Cambridge, Mass., 1966, p. 294.Google Scholar
  20. 20.
    Chappell, J.B.: Brit. Med. Bull. 24: 150 (1968).PubMedGoogle Scholar
  21. 21.
    Mitchell, P.: Nature 191: 144 (1961).PubMedCrossRefGoogle Scholar
  22. 22.
    Mitchell, P.: Biol. Rev. 41: 445 (1966).PubMedCrossRefGoogle Scholar
  23. 23.
    Rottenberg, H., Caplan, S.R., and Essig, A.: Nature 216: 610 (1967).PubMedCrossRefGoogle Scholar
  24. 24.
    Caplan, S R., and Essig, A.: Proc. Nat. Acad. Sci. 64: 211 (1969).PubMedCrossRefGoogle Scholar
  25. 25.
    Ganong, W.F.: Review of Medical Physiology. Lange Medical Publications, Los Altos, 1963.Google Scholar
  26. 26.
    Hodgkin, A.L., and Huxley, A.F.: Cold Spring Harbor Symp. Quant. Biol. 17: 43 (1952).PubMedCrossRefGoogle Scholar
  27. 27.
    Sollner, K.: Biochem. Z. 244: 370 (1932).Google Scholar
  28. 28.
    Neihof, R., and Sollner, K.: J. Phys. Colloid Chem. 54: 157 (1950).CrossRefGoogle Scholar
  29. 29.
    Neihof, R., and Sollner, K.: J. Gen. Physiol. 38: 613 (1955).PubMedCrossRefGoogle Scholar
  30. 30.
    Carr, C., and Sollner, K.: Biophys. J. 4: 189 (1964).PubMedCrossRefGoogle Scholar
  31. 31.
    Weinstein, J.N., and Caplan, S.R.: Science 161: 70 (1968).PubMedCrossRefGoogle Scholar
  32. 32.
    Woermann, D.: Ber. Bunsengesell. Physik. Chem. 71: 87 (1967).Google Scholar
  33. 33.
    Grim, E., and Sollner, K.: J. Gen. Physiol. 40: 887 (1957).PubMedCrossRefGoogle Scholar
  34. 34.
    Grim, E., and Sollner, K.: J. Gen. Physiol. 44: 381 (1960).PubMedCrossRefGoogle Scholar
  35. 35.
    Kedem, O., and Katchalsky, A.: Trans. Faraday Soc. 59: 1918, 1931, 1941 (1963).CrossRefGoogle Scholar
  36. 36.
    Staverman, A.J.: Rec. Tray. Chim. 70: 344 (1951).CrossRefGoogle Scholar
  37. 37.
    Staverman, A.J.: Trans. Faraday Soc. 48: 176 (1952).CrossRefGoogle Scholar
  38. 37.
    Staverman, A.J.: Trans. Faraday Soc. 48: 176 (1952).CrossRefGoogle Scholar
  39. 39.
    Katchalsky, A., and Spangler, R.: Quart. Rev. Biophys. 1: 127 (1968).CrossRefGoogle Scholar
  40. 40.
    Goldman, R., Silman, H.I., Caplan, S.R., Kedem, O., and Katchalski, E.: Science 150: 758 (1965).PubMedCrossRefGoogle Scholar
  41. 41.
    Goldman, R., Kedem, O., Silman, H.I., Caplan, S.R., and Katchalski, E.: Biochemistry 7: 486 (1968).PubMedCrossRefGoogle Scholar
  42. 42.
    Mitz, M.A.: In Proceedings of the Conference on Natural and Synthetic Membranes, Boston, 1967, C. Saravis et al., Eds. U.S.D.H.E.W., Bethesda, p. 208.Google Scholar
  43. 43.
    Selegny, E., Avrameas, S., Broun, G., and Thomas, D.: C. R. Acad. Sci. Paris 266c: 1431 (1968).Google Scholar
  44. 44.
    Goldman, R., Kedem, O., and Katchalski, E.: Biochemistry 7: 4518 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    DeSimone, J.A., Owen, A., and Caplan, S.R.: Biophysical Soc. Abstracts 10: 71a (1970).Google Scholar
  46. 46.
    DeSimone, J.A. and Caplan, S.R.: In Mass Transfer in Biological Systems, A.L. Shrier and T.G. Kaufmann, Eds. Chem. Eng. Progr. Symp. Ser. 66:43 (1970).Google Scholar
  47. 47.
    Blumenthal, R., Caplan, S.R., and Kedem, O.: Biophysical J. 7: 735 (1967).CrossRefGoogle Scholar
  48. 48.
    Kedem, O.: In Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk, Eds. Academic Press, New York, 1961, p. 87.Google Scholar
  49. 49.
    Essig, A., and Caplan, S.R.: Biophys. J. 8: 1434 (1968).PubMedCrossRefGoogle Scholar
  50. 50.
    Ussing, H.H., and Zerahn, K.: Acta Physiol. Scand. 23: 110 (1951).PubMedCrossRefGoogle Scholar
  51. 51.
    Leaf, A., Anderson, J., and Page, L.B.: J. Gen. Physiol. 41: 657 (1958).PubMedCrossRefGoogle Scholar
  52. 52.
    Vieira, F.L., Caplan, S.R., and Essig, A.: In preparation.Google Scholar
  53. 53.
    Vieira, F.L., Caplan, S.R., and Essig, A.: In preparation.Google Scholar
  54. 54.
    Jardetzky, O.: Nature 211: 969 (1966).PubMedCrossRefGoogle Scholar
  55. 55.
    Blumenthal, R., and Kedem, O.: Biophys. J. 9: 432 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • S. Roy Caplan
    • 1
  1. 1.Biophysical LaboratoryHarvard Medical SchoolBostonUSA

Personalised recommendations