Deformation Mechanism of Elastomeric Block Copolymers

  • T. Inoue
  • M. Moritani
  • T. Hashimoto
  • H. Kawai


In recent years, a class of linear amorphous block copolymers, such as styrene-butadiene block copolymers and polyester-MDI block copolymers, has attracted attension. These are named as “Thermoplastics” or “Segmented Elastomers”, because of their characteristic mechanical properties similar with those of the conventional reinforced rubber vulcanizates at service temperature without both crosslinking and filler-modifying processes (1,2). The elastomeric properties of these materials have been investigated by means of tensile stress— strain relation and speculated in terms of their molecular architectures without taking Account of the deformation mechanism of their microheterogeneous structures, which are resulted from micro-phase separation of the block segments in close relations to the molecular architectures and the preparation conditions of the bulk materials (3).


Block Copolymer Lower Density Region Film Specimen Spherical Domain Extension Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    M. Morton, J.E. McCrath, and P.C. Juliano, J. Polymer Sci. C, 26, 99 (1969)Google Scholar
  2. 2).
    S.L. Cooper and A.V. Tobolsky, Polymer Preprints, ACS, 8, 52 (1967)Google Scholar
  3. 3).
    R. Zelinski and C.W. Childers, Rubber Chem. Technol., 41, 161 (1968)CrossRefGoogle Scholar
  4. 4).
    E. Fischer and J.F. Henderson, J. Polymer Sci. C, 26, 149 (1969)Google Scholar
  5. 5).
    R.S. Stein and G.L. Wilkes, J. Polymer Sci. A–2, 7, 1525 (1969)CrossRefGoogle Scholar
  6. 6).
    D.G. LeGrand, Polymer Letters, 7, 579 (1969)CrossRefGoogle Scholar
  7. 7).
    R.S. Stein, private communicationGoogle Scholar
  8. 8).
    T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, J. Polymer Sci. A–2, 7, 1 1283 (1969)Google Scholar
  9. 9).
    T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, Macromolecules, 3, 87 (1970)CrossRefGoogle Scholar
  10. 10).
    A. Plaza and R.S. Stein, J. Polymer Sci., 40, 267 (1959)CrossRefGoogle Scholar
  11. 11).
    R.S. Stein and N.B. Rhodes, J. Appi. Phys., 31, 1837 (i960)Google Scholar
  12. 12).
    H. Hendus, K.H. Illers, and E. Ropte, Kolloid-Z. Z. Polymere, 216–217, no (1967)Google Scholar
  13. 13).
    G.A. Harpell and C.E. Wilkes, Polymer Preprints, ACS, 10, No. 2, 678 (1969)Google Scholar
  14. 14).
    D. Mclntyre and E. Campos-Lopez, “Block Polymers” edited by S.L. Aggarwal, Plenum Press, N.Y., 19 (1970)Google Scholar
  15. 15).
    M. Moritani, T. Inoue, M. Motegi, and H. Kawai, Macromolecules, July-August issue (1970)Google Scholar
  16. 16).
    A. Guinier et al., “Small-Angle Scattering of X-rays”, John Wiley and Sons., N.Y., (1955), Chapter 2.Google Scholar
  17. 17).
    J.F. Beecher, L. Marker, R.D. Bradford, and S.L. Aggarwal, J. Polymer Sci. C, 26, 117 (1969)Google Scholar
  18. 18).
    E.T. Bishop and S. Davison, J. Polymer Sci. C, 26, 39 (1969)Google Scholar
  19. 19).
    T. Uchida, M.S. thesis presented to the Department of Polymer Chemistry, Faculty of Engineering, Kyoto Univ., March 11 th, 1970.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • T. Inoue
    • 1
  • M. Moritani
    • 1
  • T. Hashimoto
    • 1
  • H. Kawai
    • 1
  1. 1.Department of Polymer Chemistry, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations