Infrared Dichroism of Segmented Polyurethane Elastomers

  • G. M. Estes
  • R. W. Seymour
  • S. J. Borchert
  • S. L. Cooper


The mechanical and optical properties of block polymers in uniaxial extension have been well-documented (l). Characteristic of these materials are high moduli, high extensibility, and high resilience relative to random copolymers of equivalent composition. Also common to block polymers is the phenomenon of stress-softening (2, 3), whereby the stress and modulus of the material are substantially lowered by the cyclic application of strain. It is generally agreed that these properties are the product of a heterophase micro-structure, which arises from the segregation of unlike blocks into separate domains (l). Higher modulus domains serve both as filler particles and as physical, multifunctional cross-link points to reinforce the elastomer. Stress-softening is postulated to result from the deformation, orientation, or partial destruction of the reinforcing domains.


Orientation Function Hard Segment Soft Segment Block Polymer Uniaxial Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Estes, G. M., S. L. Cooper, and A. V. Tobolsky, J. Macromol. Sci., C4 (1), 167 (1970).Google Scholar
  2. 2.
    Trick, G. S., J. Appl. Polymer Sci., 252 (1960).Google Scholar
  3. 3.
    S. L. Cooper, D. S. Huh, and W. J. Morris, Ind. Engr. Chem., Prod. Res. Development, 7, 248 (1968).Google Scholar
  4. 4.
    Estes, G. M., R. W. Seymour, D. S. Huh, and S. L. Cooper, Polymer Engr. Sci., 9, 383 (1969).CrossRefGoogle Scholar
  5. 5.
    Estes, G. M., D. S. Huh, and S. L. Cooper, Block Polymers (S. L. Aggarwal, Ed.), Plenum Press, New York (1970), p. 225.Google Scholar
  6. 6.
    Puett, D., J. Polymer Sci., A–2, 5, 839 (1967).Google Scholar
  7. 7.
    Henderson, J. F., K. H. Grundy, and E. Fischer, J. Polymer Sci., Cl6, 3121 (1968).Google Scholar
  8. 8.
    Fischer, E. and J. F. Henderson, Rubber Chem. and Technol., 40 (5), 1373 (1967).CrossRefGoogle Scholar
  9. 9.
    Wilkes, G. L. and R. S. Stein, J. Polymer Sci., A–2, 7., 1525 (1969).Google Scholar
  10. 10.
    Nishioka, A., J. Furakawa, S. Yamashita, and T. Kotani, J. Appl. Polymer Sci., 14, 799 (1970).CrossRefGoogle Scholar
  11. 11.
    LeGrand, D. G., Polymer Letters, 7, 579 (1970).CrossRefGoogle Scholar
  12. 12.
    Zbinden, R., The Infrared Spectroscopy of High Polymer, Academic Press, New York, 1964.Google Scholar
  13. 13.
    Fraser, R. D. B., J. Chem. Phys., 21 (9), 1511 (1953); 28 (6), 1113 (1958).CrossRefGoogle Scholar
  14. 14.
    Stein, R. S., J. Polymer Sci., 31, 327 (1958).CrossRefGoogle Scholar
  15. 15.
    R. W. Seymour, G. M. Estes and S, L. Cooper, Macromolecules, in press,Google Scholar
  16. 16.
    Koutsky, J. A., N. V. Hien, and S. L. Cooper, J, Polymer Sci, B, in press,Google Scholar
  17. 17.
    Bonart, R., J, Macromol. Sci., B2 (l), 115 (1968),Google Scholar
  18. 18.
    Huh, D. S., unpublished observations.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • G. M. Estes
    • 1
  • R. W. Seymour
    • 1
  • S. J. Borchert
    • 1
  • S. L. Cooper
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations