Skip to main content

APW Pseudopotential Form Factors for the Alkali Metals

  • Chapter
Computational Methods in Band Theory

Part of the book series: The IBM Research Symposia Series ((IRSS))

  • 261 Accesses

Abstract

Several authors have adapted the techniques of band structure calculation to analyze experimental Fermi surface data. The secular determinant that arises in a first principles band structure calculation is expressed in terms of suitably-chosen parameters, and these are adjusted to fit the data. Two alternative methods have been developed and exploited; the OPW pseudopotential method is based on the OPW secular determinant, while the phase shift method is based on the APW secular determinant. The relationship between these two methods in the analysis of experimental Fermi surface data is discussed. The APW pseudopotential form factors that describe the electronion interaction in the alkali metals are presented, and are compared with form factors derived from OPW based pseudopotentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).

    Article  Google Scholar 

  2. A. O. E. Animalu, F. Bonsignori, and V. Bortolani, Nuovo Cimento 44B, 159 (1966).

    Article  Google Scholar 

  3. N. W. Ashcroft and J. Wilkins, Phys. Lett. 14, 285 (1965).

    Google Scholar 

  4. J. P. Carbotteand R. C. Dynes, Phys. Lett. 25A, 532 (1967).

    Article  Google Scholar 

  5. N. W. Ashcroft and L. J. Guild, Phys. Lett. 14, 23 (1965).

    Article  Google Scholar 

  6. C. Hodges, Phil. Mag. 15, 371 (1967).

    Article  Google Scholar 

  7. J. P. Carbotte and R. C. Dynes, Phys. Lett. 25A, 685 (1967).

    Article  Google Scholar 

  8. For a review see M. L. Cohen and V. Heine, Solid State Physics, Vol. 24 ( Academic Press, New York, 1970 ).

    Google Scholar 

  9. N. W. Ashcroft, Phys. Rev. 140, A935 (1965).

    Article  Google Scholar 

  10. M. J. G. Lee and L. M. Falicov, Proc. Roy. Soc. (London) A304, 319 (1968).

    Article  Google Scholar 

  11. J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

    Article  Google Scholar 

  12. J. C. Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev. 162, 600 (1967).

    Article  Google Scholar 

  13. R. W. Stark and L. M. Falicov, Phys. Rev. Lett. 19, 795 (1967).

    Article  Google Scholar 

  14. R. W. Stark and L. M. Falicov, Phys. Rev. Lett. 19, 795 (1967).

    Article  Google Scholar 

  15. M. J. G. Lee, Phys. Rev. 178, 953 (1969).

    Article  Google Scholar 

  16. J. J. Donaghy and A. T. Stewart, Phys. Rev. 164, 391 (1967).

    Article  Google Scholar 

  17. M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440 (1966).

    Article  Google Scholar 

  18. D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London) A281, 62 (1964).

    Article  Google Scholar 

  19. K. Okumura and I. M. Templeton, Proc. Roy. Soc. (London) A287, 89 (1965).

    Article  Google Scholar 

  20. J. M. Ziman, Adv. Phys. 13, 89 (1964).

    Article  Google Scholar 

  21. W. A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin Inc., New York, 1966 ).

    Google Scholar 

  22. Ibid., p. 31.

    Google Scholar 

  23. Ibid, p. 288.

    Google Scholar 

  24. J. C. Slater, Phys. Rev. 51, 846 (1937); 92, 603 (1953).

    Article  Google Scholar 

  25. R. W. Shaw and W. A. Harrison, Phys. Rev. J 63, 604 (1967).

    Article  Google Scholar 

  26. R. W. Shaw, Phys. Rev. 174, 769 (1968).

    Article  Google Scholar 

  27. W. A. Harrison, Phys. Rev. 131, 2433 (1963).

    Article  Google Scholar 

  28. A. O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965); see also reference 21, p. 310.

    Article  Google Scholar 

  29. J. Callaway, Phys. Rev. 103, 1219 (1956); L. C. Allen, Quarterly Report of the Solid State and Molecular Theory Group, MIT, October 1958, p. 45; F. S. Ham, Phys. Rev. 128, 82 (1962); J. F. Kenney (private communication).

    Article  Google Scholar 

  30. C.J. Powell (to be published).

    Google Scholar 

  31. N. V. Smith (to be published).

    Google Scholar 

  32. M. H. Cohen and V. Heine, Adv. Phys. 7, 395 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Lee, M.J.G. (1971). APW Pseudopotential Form Factors for the Alkali Metals. In: Marcus, P.M., Janak, J.F., Williams, A.R. (eds) Computational Methods in Band Theory. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1890-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1890-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1892-7

  • Online ISBN: 978-1-4684-1890-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics