Advertisement

The Use of the GI Method in Band Calculations on Solids

  • William A. GoddardIII
  • Patricia M. O’Keefe
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The application of the GI method to band calculations is discussed with primary emphasis on the alkali metals. The GI method goes beyond Hartree-Fock by allowing all orbitals to split, however the total wavefunction is modified so as to retain the correct spin symmetry. We find that the resulting band structure leads to a natural explanation of such puzzling properties as, the magneto-resistance, the prepeaking of the soft X-ray emission spectrum of Li, and the Mott Paradox.

Keywords

Fermi Surface Spin Density Wave Band Calculation Symmetry Function Brillouin Zone Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. 1.
    W. A. Goddard III, “Improved Quantum Theory of Many-Electron Systems. II. The Basic Method”, Phys. Rev. 157, 8l (1967).Google Scholar
  2. 3.
    R. C. Iadner and W. A. Goddard III, “An Improved Quantum Theory of Many-Electron Systems. V. The Spin-Coupling Optimized GI Method”, J. Chem. Phys. 51, 1073 (1969).CrossRefGoogle Scholar
  3. 4.
    (a) W. A. Goddard III and R. C. Iadner, “The Optimum Orbitals for the Hp + D H + HD Exchange Reaction”, Int. J. Quantum Chem. 3S, 63 (1969); (b) R. C. Ladner and W. A. Goddard III, “Potential Energy Surfaces for the Reactions of Small Systems. I. Ab Initio SOGI Energies and Orbitals for Linear H3 and LiH2”, to be published. (c) W. A. Goddard III and R. C. Ladner, “The Orbital Description of the Reactions of Small Molecules”, to be published. d) W. A. Goddard III, “The Orbital Phase Continuity Principle and Selection Rules for Chemical Reactions”, to be published.Google Scholar
  4. 6.
    S. Fraga and B. J. Ransil, “Potential Curve for the Interaction of Two Hydrogen Atoms in the LCAO MO SGF Approximation”, J. Chem. Hays. 35, 1987 (1961).Google Scholar
  5. 7.
    In Fig. 2, the HF energy curve is from ref. 6, the GI energy curve is from ref. Vb, and the exact energy curve is from W. Kolos and L. Wolniewicz, “Accurate Adiabatic Treatment of the Ground State of the Hydrogen Molecule”, J. Chem. Phys. 41 3663 (1964).CrossRefGoogle Scholar
  6. 8.
    (b) B. H. Taylor, W. H. Parker, and D. N. Iangenberg, The Fundamental Constants and Quantum Electrodynamics ( Academic Press, New York, 1969 ).Google Scholar
  7. 9.
    W. A. Goddard III, “Improved Quantum Theory of Many-Electron Systems. I. Construction of Eigenfunctions of S2 which Satisfy Pauli’s Principle”, Phys. Rev. 157, 73 (1987).CrossRefGoogle Scholar
  8. 10.
    W. A. Goddard III, “Wavefunctions and Correlation Energies for Two-, Three-, and Four-Electron Atoms”, J. Chem. Phys. 48, 1008 (1968).CrossRefGoogle Scholar
  9. 11.
    W. A. Goddard III, “The Symmetric Group and the Spin Generalized SCF Method”, Int. J. Quantum Chem. 3S, 593 (1969).CrossRefGoogle Scholar
  10. 12.
    W. A. Goddard III, “New Type of Wave Function for Li, Be+, and B++”, Phys. Rev. 169, 120 (1968).CrossRefGoogle Scholar
  11. 13.
    W. A. Goddard III, “Magnetic Hyperfine Structure and Core Polarization in the Excited States of Lithium”, Phys. Rev. 176, 106 (1968).CrossRefGoogle Scholar
  12. 14.
    a) W. A. Goddard III, “A New Foundation for the Use of Pseudopotentials in Metals”, Phys. Rev. 174, 659 (1968); (b) L. R. Kahn and W. A. Goddard III, “A Direct Test of the Use of Pseudopotentials in Molecules”, Chem. Phys. Lett. 2, 667 (1968).CrossRefGoogle Scholar
  13. 15.
    W. E. Palke and W. A. Goddard III, “The Electronic Structure of LiH According to a Generalization of the Valence Bond Method”, J. Chem. Phys. 50, 4524 (1969).CrossRefGoogle Scholar
  14. 19.
    W. A. Goddard III, “Improved Quantum Theory of Many-Electron Systems. III. The GF Method”, J. Chem. Phys. 48, 450 (1968).CrossRefGoogle Scholar
  15. 22.
    P. M. O’Keefe and W. A. Goddard III, “lithium Energy Band Structure from Ab Initio Pseudopotentials”, Phys. Rev. 180, 747 (1969).CrossRefGoogle Scholar
  16. 23.
    N. P. Mott, “The Basis of the Electron Theory of Metals with Special Reference to the Transition Metals”, Proc. Roy. Soc. (London) A62, 416 (1949); J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1964 ).Google Scholar
  17. 24.
    H. W. B. Skinner, “The Soft X-Ray Spectroscopy of the Solid State”, Rept. Progr. Phys. 5, 257 (1938); D. E. Bedo and D. H. Tomboulian, “K-Bnission Spectrum of Metallic Lithium”, Phys. Rev. 109, 35 (1958).CrossRefGoogle Scholar
  18. 26.
    Figure 9 is based on R. H. Parmenter, “Electronic Energy Bands in Crystals”, Phys. Rev. 86, 552 (1952).CrossRefGoogle Scholar
  19. 27.
    F. S. Ham, “Energy Bands of Alkali Metals. I. Calculated Bands”, Phys. Rev. 128, 82 (1962).CrossRefGoogle Scholar
  20. 28.
    R. S. Crisp and S. E. Williams, “The Soft X-Ray Emission Spectra of Sodium, Beryllium, Boron, Silicon, and Lithium”, Phil. Mag, 6, 365 (1961).CrossRefGoogle Scholar
  21. 29.
    D. A. Goodings, “Interpretation of the Soft X-Ray Bnission Spectrum of lithium Metal”, Proc. Phys. Soc. 86, 75 (1965).CrossRefGoogle Scholar
  22. 30.
    P. M. O’Keefe and W. A. Goddard III, “A New Approach to Energy Band Calculations with Results for Lithium Metal”, Phys. Rev. Lett. 23, 300 (1969).CrossRefGoogle Scholar
  23. 31.
    M. H. Cohen and L. M. Falicov, “Magnetic Breakdown in Crystals” Phys. Rev. Lett. 7, 231 (1961).CrossRefGoogle Scholar
  24. 32.
    P. A. Penz and R. Bowers, “Strain Dependent Magnetoresistance of Potassium”, Phys. Rev. 172, 991 (1968).CrossRefGoogle Scholar
  25. 33.
    J. Babiskin and P. G. Siebenmann, “Saturating and Linear Magnetore si stive Effects in Sodium and Potassium”, Phys. Kondens Materie 9, 113 (1969).CrossRefGoogle Scholar
  26. 35.
    P. A. Penz, “Field-Dependent Hall Coefficient in Potassium”, Phys. Rev. Lett. 20, 725 (1968).CrossRefGoogle Scholar
  27. 36.
    R. G. Chambers and B. K. Jones, “Measurement of High-Field Hall Effect by an Inductive Method”, Proc. Roy Soc. A270, 417 (1962)CrossRefGoogle Scholar
  28. 37.
    J. J. Donaghy and A. T. Stewart, “Fermi Surface of Lithium by Positron Annihilation”, Phys. Rev. 164, 391 (1967).CrossRefGoogle Scholar
  29. 38.
    D. Shoenberg and P. J. Stiles, “The De Haas-van Alphen Effect in Alkali Metals”, Proc. Roy. Soc. A281, 62 (1964).Google Scholar
  30. 39.
    C. C. Grimes and A. F. Kip, “Cyclotron Resonance in Sodium and Potassium”, Phys. Rev, 132, 1991 (1963).CrossRefGoogle Scholar
  31. 40.
    H. Mayer and M. H. Elnaby, “Zum Inneren LLghtelektrisehen Effekt (Quantensprungabsorption) im Alkali Metall Kalium”, Z. Physik. 174, 289 (1963).CrossRefGoogle Scholar
  32. 41.
    M. H. Cohen and J. C. Phillips, “Evidence for a New Collective Resonance in a Free Electron Metal”, Phys. Rev. Lett. 12, 662 (1964).CrossRefGoogle Scholar
  33. 42.
    A. W. Overhauser, “Spin-Density Wave Antiferromagnetism in Potassium”, Phys. Rev. Lett. 13, 190 (1964).CrossRefGoogle Scholar
  34. 43.
    N. V. Smith, “Optical Constants of Sodimi and Potassium from 0.5 to 4.0 eV by Split-Beam Ellip some try”, Phys. Rev. 183, 634 (1969).CrossRefGoogle Scholar
  35. 44.
    J. C. Slater, “Cohesion in Monovalent Metals”, Phys. Rev. 35, 509 (1930).CrossRefGoogle Scholar
  36. 45.
    A. W. Overhauser, “Spin Density Waves in an Electron Gas”, Phys. Rev. 128, 1437 (1962).CrossRefGoogle Scholar
  37. 46.
    a) J. R. Reitz and A. W. Overhauser, “Magnetoresistance of Potassium”, Phys. Rev. 171, 749 (1968). (b) A. W. Overhauser, “Exchange and Correlation Instabilities of Simple Metals”, Phys. Rev. 167, 691 (1968).CrossRefGoogle Scholar
  38. 47.
    T. M. Wilson, “A Study of the Electronic Structure of the First Roy Transition-Metal Compounds”, Int. J. Quantum Chem. 3S, 757 (1970).Google Scholar
  39. 48.
    J. L. Calais, “Different Bands for Different Spins. I. The Cohesive Energy of an Alkali Metal”, Ark. Fysik. 28, 479 (1965).Google Scholar
  40. 49.
    R. Paunz, J. De Heer, and P. O. Lowdin, “Studies on the Alternant Molecular Oribtal Method, I, II” J. Chem. Phys. 36, 2247, 2257 (1962).CrossRefGoogle Scholar
  41. 50.
    J. De Heer, “The Method of Different Orbitals for Different Spins and Its Application to Alternant Hydrocarbons”, Rev. Mod. Phys. 35, 631 (1963).CrossRefGoogle Scholar
  42. 51.
    a) E. G. Larson and W. R. Thorson, “Study of Electron Correlation in the Hg Ring, Using a Novel Approximation”, J. Chem. Phys. 43, 3832 (1965); “Model of Electron Correlation in Solids”, J. Chem. Phys. 45, 1539 (1966). (b) J. W. Mosko-witz, “Study of the Hg Ring in the Molecular Orbital and Alternant Molecular Orbital Approximations”, J. Chem. Phys. 38, 677 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • William A. GoddardIII
    • 1
  • Patricia M. O’Keefe
    • 1
  1. 1.A. A. Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations