Thermoelectric Transport Coefficients of Cubic Crystals via K-Space Integration

  • J. M. Schoen
Part of the The IBM Research Symposia Series book series (IRSS)


In cubic crystals the electrical and thermal conductivities and the absolute thermoelectric power can all be expressed in terms of the integral
$${K_O}\left( \varepsilon \right) = \frac{1}{{12{\pi ^3}{\hbar ^2}}}\sum\limits_q \smallint {\nabla _k}\varepsilon {\rm T}\left({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{k} ,\varepsilon } \right)d{S_q}\left( \varepsilon \right)$$
and its first energy derivative at the Fermi surface.1 Here q is the index of the constant-energy surface sheet and T(k̲,ε) is a generalized relaxation time function of the wavevector k̲ and the energy ε. The integrand of Eq. (1) is analytic everywhere; therefore it should be possible to calculate KO (ε) with an empirical value of T or a function T(k,ε) derived from a model.


Thermal Conductivity Band Structure Fermi Surface Fermi Energy Proper Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. M. Ziman, “Principles of the Theory of Solids,” Cambridge University Press, 1964, pp. 194–204.Google Scholar
  2. 2.
    L. F. Matheiss, Phys. Rev. B 1 373 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • J. M. Schoen
    • 1
  1. 1.Bell Telephone Laboratories, Inc.AllentownUSA

Personalised recommendations