Advertisement

Interpolation and k-Space Integration: A Review

  • F. M. Mueller
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The principal techniques used to form representations of integrals over the Brillouin zone which include Dirac δ-functions in their integrands are reviewed. The problem was first solved using Monte-Carlo procedures applied directly to the Hamiltonian. Recent interest has centered on two methods which utilize microscopic interpolation. The singular integration is carried out either through Monte-Carlo procedures or through a procedure which uses a further linear expansion and numerical integration. Both of these procedures represent their results in terms of histograms. Techniques for including matrix elements in the integrand are considered and new results presented. A new technique is given which uses high order Hermite functions to numerically integrate the principal-value kernel.

Keywords

Brillouin Zone Hermite Function Quadratic Interpolation Mesh Parameter Plane Wave Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley Publishing Co., Reading, Mass., 1969) second edition.Google Scholar
  2. 2.
    A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation ( Academic Press, New York, 1963 ).Google Scholar
  3. 3.
    W. A. Harrison, The Pseudopotential Method (W. A. Benjamin, Inc., New York, 1966) and references therein.Google Scholar
  4. 4.
    F. M. Mueller and J. C. Phillips, Phys. Rev. 157, 600 (1967).CrossRefGoogle Scholar
  5. 5.
    L. van Hove, Phys. Rev. 89, 1189 (1953).CrossRefGoogle Scholar
  6. 6.
    J. C. Phillips, Phys. Rev. 104, 1263 (1956).CrossRefGoogle Scholar
  7. 7.
    M. Morse, Functional Topology and Abstract Variational Theory ( Gauthiers-Villars, Paris, 1939 ).Google Scholar
  8. 8.
    A. A. Maradudin, op. cit., p. 65 and references therein.Google Scholar
  9. 9.
    G. D. Fletcher and E. P. Wohlfarth, Phil. Mag. 42, 106 (1951), Proc. Phys. Soc. (London) A65, 192 (1952); J. F. Cornwell and E. P. Wohlfarth, J. Phys. Soc. Japan 17, (Suppl. B-l), 32 (1962).Google Scholar
  10. 10.
    F. M. Mueller, J. W. Garland, M. H. Cohen and K. H. Bennemann, to be published.Google Scholar
  11. 11.
    G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966); a similar method has been implemented by L. R. Saravia and D. Brust, Phys. Rev. 170, 683 (1968); see also other papers of this conference.CrossRefGoogle Scholar
  12. 12.
    J. F. Janak, to be published.Google Scholar
  13. 13.
    F. M. Mueller, J. W. Garland, M. H. Cohen and K. H. Bennemann, Argonne Report ANL-7556, unpublished. This report contains all of the Fortran programs used in the QUAD scheme.Google Scholar
  14. 14.
    J. F. Janak and F. M. Mueller, private communication.Google Scholar
  15. 15.
    R. Afshar, F. M. Mueller and J. C. Shaffer, ANL Report,Google Scholar
  16. 16.
    R. Afshar, F. M. Mueller and J. C. Shaffer, to be published.Google Scholar
  17. 17.
    A. R. Williams and F. M. Mueller, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • F. M. Mueller
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations