Advertisement

Efficient Numerical Techniques for the Calculation of KKR Structure Constants

  • Harold L. Davis
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

Simple computational techniques are described which enable the inherent rapid convergence (low order matrix) of the KKR method to be fully exploited for the performance of efficient band structural calculations. These techniques are for the computer evaluation of the KKR structure constants, which are the basic potential independent functions necessary when using this first principles method. By using both analytical and computational partitioning of standard formulas for the structure constants, the present approach enables them to be evaluated by expending computer times which are of the same order as the times required to calculate the KKR determinants from their matrix elements.

Keywords

Structure Constant Total Calculation Band Structural Calculation Efficient Numerical Technique Simple Numerical Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Korringa, Physica 13, 392 (1947).CrossRefGoogle Scholar
  2. 2.
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).CrossRefGoogle Scholar
  3. 3.
    B. Segall and F. S. Ham, General Electric Res. Lab. Rept. No. 61-RL-(2876G), unpublished.Google Scholar
  4. 4.
    J. S. Faulkner, H. L. Davis, and H. W. Joy, Phys. Rev. 161, 656 (1967).CrossRefGoogle Scholar
  5. 5.
    H. L. Davis, J. S. Faulkner, and H. W. Joy, Phys. Rev. 167, 601 (1968).CrossRefGoogle Scholar
  6. 6.
    H. L. Davis, Physics Letters 28A, 85 (1968).Google Scholar
  7. 7.
    R. W. Williams and H. L. Davis, Physics Letters 28A, 412 (1968).CrossRefGoogle Scholar
  8. 8.
    H. L. Davis, to be published in the proceedings of the International Colloquium on the Physics of Solids under Pressure, held at Grenoble, France, September 8–10, 1969.Google Scholar
  9. 9.
    R. W. Williams and H. L. Davis, to be published in the proceedings of the Electronic Density of States Symposium, held at Washington, D.C., November 3–6, 1969.Google Scholar
  10. 10.
    Y. Onodera and Okazaki, J. Phys. Soc. Japan 21, 1273 (1966).CrossRefGoogle Scholar
  11. 11.
    S. Takada, Progr. Theoret. Physics (Kyoto) 36, 224 (1966).CrossRefGoogle Scholar
  12. 12.
    J. Treusch, Phys. Status Solid 19, 603 (1967).CrossRefGoogle Scholar
  13. 13.
    J. S. Faulkner, Physics Letters 31A, 227 (1970).CrossRefGoogle Scholar
  14. 14.
    K. H. Johnson, article elsewhere this volume.Google Scholar
  15. 15.
    B. Segall, article elsewhere this volume.Google Scholar
  16. 16.
    F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).CrossRefGoogle Scholar
  17. 17.
    B. Segall and F. S. Ham, Methods Comput. Phys. 8, 251 (1968).Google Scholar
  18. 18.
    B. R. Cooper, E. L. Kreiger, and B. Segall, article elsewhere this volume.Google Scholar
  19. 19.
    P.J. Davis, in “Handbook of Mathematical Physics,” edited by M. Abramowitz and I. A. Stegum, National Bureau of Standards AMS 55, Washington, D.C., 1964, p. 253.Google Scholar
  20. 20.
    P. M. Morse, Proc. Natl. Acad. Sci. U.S. 42, 276 (1956).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Harold L. Davis
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations