Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

The mechanical properties of polymers differ fundamentally in many respects from those of metals and much of this difference can be ascribed to the characteristic structures of these two classes of material. Most polymers consist of long molecular chains which are built up from a large number of single molecular units called mers. These molecular chains vary in length and hence the material has a range of molecular weights whose average can vary from a few hundred for a simple polymer up to about a million for those with very long chains. The chains are rarely straight, being typically coiled or tangled randomly; they may have side branches, and they can be built up from two or more basic mers to form copolymer chains. Polymers can be divided into two basic groups, the thermoplastics and the thermosetting resins, and their dissimilar mechanical properties are a reflection of their different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Reference Works

  1. H. Mark (Ed.), Encyclopedia of Polymer Science and Technology, John Wiley and Sons, New York, Vol. 1 (1964) to latest Vol. 11 (1969).

    Google Scholar 

  2. E. H. Andrews, Fracture of Polymers, Oliver and Boyd (1968).

    Google Scholar 

  3. F. W. Billmeyer, Textbook of Polymer Science, Interscience, New York (1962).

    Google Scholar 

  4. F. Bueche, Physical Properties of Polymers, Interscience, New York (1962).

    Google Scholar 

  5. J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley and Sons, New York (1961).

    Google Scholar 

  6. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953).

    Google Scholar 

  7. M. Gorden, High Polymers, Iliffe, London (1963).

    Google Scholar 

  8. G. F. Kinney, Engineering Properties and Applications of Plastics, John Wiley and Sons, New York (1957).

    Google Scholar 

  9. L. E. Nielsen, Mechanical Properties of Polymers, Reinhold, New York (1962).

    Google Scholar 

  10. G. R. Palin, Plastics for Engineers, Pergamon Press, Oxford (1967).

    Google Scholar 

  11. L. R. G. Treloar, The Physics of Rubber Elasticity, Clarendon, Oxford (1958).

    Google Scholar 

  12. A. V. Tobolsky, Properties and Structure of Polymers, John Wiley and Sons, New York (1960).

    Google Scholar 

  13. L. H. Van Vlack, Elements of Materials Science, Addison-Wesley, Reading, Mass. (1964).

    Google Scholar 

  14. J. Wulff (Ed.), The Structure and Properties of Materials, Vol. 1 (“Structure”) and Vol. 3 (“Mechanical Behavior”), John Wiley and Sons, New York (1965).

    Google Scholar 

  15. E. Gillam, Materials Under Stress, Newnes-Butterworths, London, (1969).

    Google Scholar 

  16. Plastics Engineering Handbook of the Society of the Plastics Industry, 3rd ed., Reinhold, New York (1960).

    Google Scholar 

  17. Plastics Year Book, Iliffe, London. (1966).

    Google Scholar 

  18. “ASTM Standards on Plastics,” Am. Soc. Testing Mat., Philadelphia (1964).

    Google Scholar 

  19. “B. S. Methods of Testing Plastics,” British Standards Institution, London (1963).

    Google Scholar 

  20. A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials, John Wiley and Sons, New York (1967).

    Google Scholar 

  21. B. Rosen (Ed.), Fracture Processes in Polymeric Solids, Interscience, New York (1964).

    Google Scholar 

  22. R. M. Ogorkiewicz, Engineering Properties of Thermoplastics, John Wiley and Sons, London (1970).

    Google Scholar 

  23. A. H. Landrock, “Properties of Plastics and Related Materials at Cryogenic Temperatures,” PLASTEC Rept. No. 20, CDC Accession No. AD 469126 (1965).

    Google Scholar 

  24. T. T. Serafini and J. L. Koenig (Eds.), Cryogenic Properties of Polymers, Marcel Dekker, New York (1968).

    Google Scholar 

  25. K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York, latest annual volume 16 (1971).

    Google Scholar 

  26. L. J. Broutman and R. H. Krock, Modern Composite Materials, Addison-Wesley, Reading, Mass. (1967).

    Google Scholar 

  27. A. Kelly, Strong Solids, Clarendon, Oxford (1966).

    Google Scholar 

  28. G. S. Holister and C. Thomas, Fibre Reinforced Materials, Elsevier, Amsterdam, (1966).

    Google Scholar 

  29. D. V. Rosato and C. S. Grove, Filament Winding : Its Development, Manufacture, Application and Design, John Wiley and Sons, New York (1964).

    Google Scholar 

  30. P. Morgan, Glass Reinforced Plastics, Iliffe, London (1961).

    Google Scholar 

Other References

  1. V. A. Kargin and G. L. Slonimsky, “Mechanical Properties (of polymers),” in H. Mark (Ed.), Encyclopedia of Polymer Science and Technology, Vol. 8, John Wiley and Sons, New York (1968), p. 455.

    Google Scholar 

  2. I. Marshall and A. B. Thompson, Proc. Roy. Soc. A221, 541 (1954).

    Google Scholar 

  3. K. H. Meyer, C. von Susich, and E. Valko, Kolloid. 59, 208 (1932)

    Google Scholar 

  4. A. Keller, in R. H. Doremus et al. (Eds.), Growth and Perfection of Crystals, John Wiley and Sons, New York (1958), p. 499.

    Google Scholar 

  5. M. Takayangi, Mem. Fac. Sci. Kyush Univ. D23 (I), 41 (1963), quoted in Ref. 24, p. 173.

    Google Scholar 

  6. C. W. Bunn and E. R. Howells, Nature 174, 549 (1954).

    Google Scholar 

  7. W. N. Findley and G. Khosla, J. Appl. Phys. 26, 821 (1955).

    Google Scholar 

  8. H. G. Gibbs and D. W. Saunders, Contemp. Phys. 8, 529 (1967).

    Google Scholar 

  9. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Google Scholar 

  10. E. Jenckel and E. Klein, Z. Naturforsch. 7a, 619 (1952).

    Google Scholar 

  11. L. Mullins, froc. Inst. Rubb. Ind. 20, 235 (1947).

    Google Scholar 

  12. M. Gorden and B. M. Grieveson, J. Polymer. Sci. 29, 9 (1958).

    Google Scholar 

  13. R. F. Robbins, “Behavior of Polymeric Materials at Cryogenic Temperatures,” Rept. on NASA Contract H-92120 to N.B.S. Boulder, Colorado (1968).

    Google Scholar 

  14. R. N. Haward and J. Mann, Proc. Roy. Soc. A282, 120 (1964).

    Google Scholar 

  15. R. A. Horsley, Trans. Plastics Inst. 30, 164 (1962).

    Google Scholar 

  16. J. P. Berry, J. Appl. Phys. 34, 62 (1963); also, in Fracture Processes in Polymeric Solids, Interscience, New York (1964), p. 195.

    Google Scholar 

  17. O. K. Spurr and W. D. Niegisch, J. Appl. Polymer Sci. 6, 585 (1962).

    Google Scholar 

  18. F. C. Frank, Proc. Roy. Soc. A282, 9, (1964).

    Google Scholar 

  19. P. I. Vincent, “Fracture (of polymers),” in H. Mark (Ed.), Encyclopedia of Polymer Science and Technology, Vol. 7, John Wiley and Sons, New York (1967), p. 292.

    Google Scholar 

  20. A. G. Thomas, “Fracture of Rubber,” in “Proc. Int. Conf. on Physical Basis of. Yield and Fracture,” Inst. Phys. and Phys. Soc., London (1966), p. 134.

    Google Scholar 

  21. B. J. Lazan and A. Yorgiadis, “ASTM Symposium on Plastics,” STP 59, Am. Soc. Testing Mat. Philadelphia, (1944).

    Google Scholar 

  22. “Bibliography of References—Low-Temperature Properties of Plastics,” Cryogenic Data Center, N.B.S. Boulder, Colorado (February 1964).

    Google Scholar 

  23. “Bibliography of References—The Properties of Adhesives at Low Temperatures,” Cryogenic Data Center, N.B.S. Boulder, Colorado (January 1963).

    Google Scholar 

  24. R. E. Mowers, Final Report, “Program of Testing Nonmetallic Materials at Cryogenic Temperatures,” Rocketdyne Division of North America Aviation, Contracts No. RTD-TDR-63–11, OTS-AD. 294 772, CEL-NBS 17404 and 15840.

    Google Scholar 

  25. “Cryogenic Materials Data Handbook,” N.B.S. Boulder, Colorado. Last updating (December 1961). Now superseded by Ref. 56.

    Google Scholar 

  26. F. R. Schwartzberg, S. H. Osgood, R. D. Keys, and T. F. Kiefer (Eds.), Cryogenic Materials Data Handbook, The Martin Co., Denver, ML-TDR-64–280 (August 1964); available from OTS as PB 171809 (revised).

    Google Scholar 

  27. P. D. Schuman, E. C. Stump, and G. Westmoreland, in Ref. 24, p. 263.

    Google Scholar 

  28. V. Englehardt, Chem. Eng. News 43, 80 (1965).

    Google Scholar 

  29. R. B. Gosnell, in Ref. 25, Vol. 9 (1964), p. 139.

    Google Scholar 

  30. F. M. Wilson, in Ref. 25, Vol. 10 (1965), p. 145.

    Google Scholar 

  31. R. F. Robbins and P. R. Ludtke, J. Spacecraft Rockets 1 (3), 253 (May-June 1964).

    Google Scholar 

  32. R. F. Robbins, D. H. Weitzel, and R. N. Herring, in Ref. 25, Vol. 7 (1962), p. 343; paper R. 320 CDC N.B.S. Boulder, Colorado.

    Google Scholar 

  33. D. H. Weitzel, R. F. Robbins, and W. R. Bjorkland, in Ref. 25, Vol. 6 (1961), p. 219;

    Google Scholar 

  34. D. H. Weitzel, R. F. Robbins, and W. R. Bjorkland, Rev. Sci. Instr. 31 (12), 1350 (1960).

    Google Scholar 

  35. W. R. Walker, “Design Handbook for O-rings and Similar Elastic Seals,” Dept. WADC TR 59–428, Part II Boeing Airplane Co. (April 1961).

    Google Scholar 

  36. K. B. Martin, T. H. Fields, E. G. Pewitt, and J. G. Fetkovitch, . D. H. Weitzel, R. F. Robbins, and W. R. Bjorkland, in Ref. 25, Vol. 9 (1964), p. 146.

    Google Scholar 

  37. F. A. Schreihaus and D. E. Robinson, in “Proc. 7th Natl. Symp. Adhesives and Elastomers for Environmental Extremes,” Soc. Aerospace Mat. Process Eng. (SAMPE), Los Angeles, California (May 20–22, 1964).

    Google Scholar 

  38. J. Hertz, Adhesives Age 4 (8), 30 (1961);

    Google Scholar 

  39. J. Hertz Rept. ERR-AN-032, General Dynamics, San Diego, California (January 25, 1961).

    Google Scholar 

  40. T. I. Bell, “The Low and Cryogenic Temperature Properties of Adhesives,” Bibliography No. 233, RAE Farnborough (January 1963).

    Google Scholar 

  41. L. M. Roseland, “Adhesives for Cryogenic Applications,” in Ref. 24, p. 17.

    Google Scholar 

  42. J. K. Kuno, in “Proc. 7th Natl. Symp. Adhesives and Elastomers for Environmental Extremes,” Soc. Aerospace Mat. Process Eng. (SAMPE), Los Angeles, California (May 20–22, 1964).

    Google Scholar 

  43. R. C. Kansen, in “Proc. 7th Natl. Symp. Adhesives and Elastomers for Environmental Extremes,” Soc. Aerospace Mat. Process Eng. (SAMPE), Los Angeles, California (May 20–22, 1964).

    Google Scholar 

  44. M. B. Smith and S. E. Susman “Development of Adhesives for Very Low Temperature Application,” Final Report on NASA Contract 1565 Narmco R. & D. Division (May 1963); also, in Ref. 25, Vol. 8 (1963), p. 300.

    Google Scholar 

  45. “Adhesives for Cryogenic Applications,” N.B.S. C.D.C. Boulder, Paper No. B-479 (August 1969).

    Google Scholar 

  46. Brief announcement in Cryogenics 10, 77 (1970); details from Lewis Research Center, Cleveland, Ohio.

    Google Scholar 

  47. C. D. Bailey, W. D. Holland, and J. Hulsebos, SAE Paper No. 7460, Natl. Aeronautics and Space Eng. and Mfg. Meeting, Los Angeles, California (September 23–27, 1963).

    Google Scholar 

  48. R. P. Caren, R. M. Colston, A. M. C. Holmes and F. Dubus, in Ref. 25, Vol. 10 (1965), p. 171.

    Google Scholar 

  49. R. N. Miller, C. D. Bailey, R. J. Beali and S. M. Freeman, in Ref. 25, Vol. 8 (1963), p. 417.

    Google Scholar 

  50. S. T. Stoy, in Ref. 25, Vol. 5 (1960), p. 216.

    Google Scholar 

  51. J. S. Light, “Proc. Int. Conf. Materials ASTM-RILEM Philadelphia,” (February 1964).

    Google Scholar 

  52. L. M. Roseland, Paper No. 1666, Natl. Aeronautics and Space Eng. and Mfg. Meeting, Los Angeles, California (September 23–27, 1963).

    Google Scholar 

  53. R. H. Kropschot, “Low-Temperature Insulation,” in R. W. Vance and W. M. Duke (Eds.), Applied Cryogenic Engineering, John Wiley and Sons, New York (1962), Chapter 5.

    Google Scholar 

  54. J. Hertz, in Ref. 25, Vol. 11 (1966), p. 287.

    Google Scholar 

  55. J. F. Haskins and J. Hertz, in Ref. 25, Vol. 7 (1962), p. 353.

    Google Scholar 

  56. L. R. Stoeiker, in Ref. 25, Vol. 5 (1960), p. 273.

    Google Scholar 

  57. A. Cooper, J. Plastics Inst. 29 (80), 40 (1961).

    Google Scholar 

  58. R. M. McClintock, in Ref. 25, Vol. 4 (1958), p. 132.

    Google Scholar 

  59. R. N. Miller, C. D. Bailey, B. T. Beale, S. M. Freeman and E. F. Coxe, Ind. Chem. Eng. 1, (4), 257, (1962).

    Google Scholar 

  60. D. J. Doherty, R. Hurd, and G. R. Lester, Chem. Ind. (London) 1962, 1340.

    Google Scholar 

  61. J. D. Griffin and R. E. Skochdopole, “Plastic Foams,” in E. Baer (Ed.), Engineering Designs for Plastics, Reinhold, New York (1964).

    Google Scholar 

  62. Article in Cryogenic Engineering News, 1969 (May), 20.

    Google Scholar 

  63. E. E. Bisson, R. L. Johnson, and W. J. Anderson, “Friction and Lubrication with Solid Lubricants at Temperatures to 1000°F with Particular Reference to Graphite,” Proc. Inst. Mech. Eng. (London), Conf. Lubrication and Wear (1957), p. 348.

    Google Scholar 

  64. D. W. Wisander and R. L. Johnson, Ref. 25, Vol. 6 (1961), p. 210; Vol. 4 (1960), p. 71; Vol. 3 (1960), p. 390.

    Google Scholar 

  65. D. H. Tantam and R. Hargreaves, in Ref. 25, Vol. 6 (1961), p. 228.

    Google Scholar 

  66. W. A. Wilson, K. B. Martin, J. A. Brennan, and B. W. Birmingham, in Ref. 25, Vol. 6 (1961), p. 245; Vol. 7 (1962), p. 262.

    Google Scholar 

  67. The Lafage Aluminous Cement Co. Ltd., Lafage House, 207 Sloane St., London S.W.I.

    Google Scholar 

  68. L. Holiday (Ed.), Composite Materials, Elsevier, Amsterdam (1966).

    Google Scholar 

  69. A. Kelly, “Fibre Reinforcement of Metals,” H.M.S.O., London (1965).

    Google Scholar 

  70. A. Kelly and G. J. Davies, Met. Revs. 10, 1 (1965).

    Google Scholar 

  71. D. Cratchley, Met. Revs. 10, 79 (1965).

    Google Scholar 

  72. R. Hill, J. Mech. Phys. Solids 11, 357 (1963).

    Google Scholar 

  73. D. L. McDanels, R. W. Jech, and J. W. Weeton, Metal Prog. 78 (6), 118 (1960).

    Google Scholar 

  74. D. L. McDanels, R. W. Jech, and J. W. Weeton, Trans. Am. Inst. Min. Metall. Petrol. Engrs. 233, 636 (1965).

    Google Scholar 

  75. A. Kelly and W. R. Tyson, in V. F. Zackay (Ed.), High-Strength Materials, John Wiley and Sons, New York (1965), p. 578.

    Google Scholar 

  76. W. H. Sutton, B. W. Rosen, and D. G. Flom. SPE J. 20, 1 (1964).

    Google Scholar 

  77. J. O. Outwater, Mod. Plastics 33, 156 (1956).

    Google Scholar 

  78. S. W. Tsai, NASA Rept. DR-224 (1965), quoted in Ref. 27, p. 153.

    Google Scholar 

  79. J. W. Davis and N. R. Zurkowski, Tech. Rept. Minnesota Mining and Mfg. Co., Reinforced Plastics Div., quoted in Ref. 26, p. 370.

    Google Scholar 

  80. F. J. McGarry and M. B. Desai, “Failure Mechanisms in Fibreglass Reinforced Plastics,” Proc. 14th Conf. SPI Reinforced Plastics Div., Section 16-E (1959).

    Google Scholar 

  81. H. L. Cox, Brit. J. Appl. Phys., 3, 72 (1952).

    Google Scholar 

  82. B. W. Rosen, in “Fiber Composite Materials,” Am. Soc. Metals, Cleveland, (1965), p. 37.

    Google Scholar 

  83. H. Schuerch, NASA Rept. CR-202 (1965).

    Google Scholar 

  84. J. Cook and J. E. Gorden, Proc. Roy. Soc. A282, 508 (1964).

    Google Scholar 

  85. N. O. Brink, “Determination of the Performance of Plastic Laminates under Cryogenic Temperature,” ASD-TDR-62–794, Narmco Res. and Dev., San Diego, California (August 1962).

    Google Scholar 

  86. D. W. Chamberlain,Ibid., Part II (March 1964).

    Google Scholar 

  87. D. W. Chamberlain, in Ref. 25, Vol. 10 (1965), p. 117.

    Google Scholar 

  88. D. W. Chamberlain, in Ref. 25, Vol. 9 (1964), p. 131.

    Google Scholar 

  89. R. D. Keys, T. F. Kiefer, and F. R. Schwartzberg, in Ref. 25, Vol. 11, (1966), p. 470.

    Google Scholar 

  90. L. M. Soffer and B. Molho, in Ref. 24, p. 87.

    Google Scholar 

  91. S. S. Oleesky and J. G. Mohr, Handbook of Reinforced Plastics, Reinhold, New York (1964).

    Google Scholar 

  92. J. Hertz, “The Effect of Cryogenic Temperatures on the Mechanical Properties of Reinforced Plastic Laminates,” SPE J. 21, (2), 181, (1965).

    Google Scholar 

  93. J. M. Toth, Jr., in Ref. 25, Vol. 9 (1964), p. 537; also Douglas Aircraft Co. Santa Monica, Rept. SM-42594 (1962).

    Google Scholar 

  94. J. M. Toth, Jr., and J. R. Barber, in Ref. 25, Vol. 10 (1965), p. 134.

    Google Scholar 

  95. L. M. Roseland, “Filament Winding Materials for Cryogenic Application,” Eng. Paper No. 1666, Douglas Missile and Space Systems Div. (September 1963).

    Google Scholar 

  96. M. P. Hanson, “Glass-, Boron-, and Graphite-Filament Wound Resin Composites and Liners for Cryogenic Pressure Vessels,” in Ref. 24, p. 29.

    Google Scholar 

  97. D. A. Wigley, R. A. Heaver, R. J. Robinson, and J. F. Harper, unpublished work.

    Google Scholar 

  98. L. N. Phillips, Royal Aircraft Establishment Farnborough Tech. Rept. 67088 (April 1967).

    Google Scholar 

  99. A. Burwood-Smith, “Mechanical Properties of Refractory Metal Wires for High-Temperature Reinforcement,” N.G.T.E. Note 739, National Gas Turbine Establishment, Pystock, Hants, U.K. (December 1968).

    Google Scholar 

  100. R. F. Lark, in Ref. 24, p. 1.

    Google Scholar 

  101. L. M. Roseland, “Evaluation of Structural Adhesives for Potential Cryogenic Use,” in Section 7 of “Proc. 7th Natl. Symp. Adhesives and Elastomers for Environmental Extremes,” Soc. Aerospace Mat. Process Eng. (SAMPE), Los Angeles, California (May 20–22, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Wigley, D.A. (1971). The Properties of Nonmetals. In: Mechanical Properties of Materials at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1887-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1887-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1889-7

  • Online ISBN: 978-1-4684-1887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics