Diffusion in Solids

  • V. Ramakrishna


Blaring the last three to four decades two factors have spurred the interest of scientists enormously in this subject? one is the availability of radioactive isotopes for diffusion studies? and the Second, the greater preoccupation of metallurgists “with the scientific foundations of what has been tiU recently a semi-empirical activity. Quantitative measurements of diffusion have been carried out extensively and excellent monographs and reviews of this work are available (1–12). These quantitative data are usually expressed in terms of a “diffusion coefficient”. Unforttmately, however, in the earlier experiments conditions of measurements have not been defined scrupulously. Hence it is not an exaggeration to state that the data reported until about 1950 or so are of doubtful dependability. In the last two decades, our understanding of the diffusion phenomena has improved considerably. At the same time considerable advances have been made in the experimental techniques using a variety of radio-active isotopes of high specific activity. Also, some novel methods of diffusion measurements have been introduced. In the present article, a discussion about the nature of diffusion coefficient D will first be presented, followed by a brief outline of experimental methods.


Diffusion Coefficient Diffusion Couple Hollow Cylinder Diffusion Phenomenon Penetration Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.F. Mehl, J. Appl. Phys., 8, 174 (1937).CrossRefGoogle Scholar
  2. 2.
    R.M. Barrer, Diffusion in & through Solids, Cambridge University Press, London (1941).Google Scholar
  3. 3.
    O.J. Smithells, Metals Reference Book, Butterworths, London (1949).Google Scholar
  4. 4.
    W. Jost, Diffusion in Solids, Liquids & Gases, Academic Press, N.I. (1952).Google Scholar
  5. 5.
    W. Seith, Diffusion in Metallen, Springer Yerlag, Berlin (1955).Google Scholar
  6. 6.
    J. Crank, “Mathematics of Diffusion” Clarendon Press, Oxford (1956).Google Scholar
  7. 7.
    J. Bardeen, Phys. Rev., 76, 1403 (1949).CrossRefGoogle Scholar
  8. 8.
    D. Lazarus, Solid State Physics, Vol. 10, 71 (1960).CrossRefGoogle Scholar
  9. 9.
    J. Manning, Phys. Rev., 116, 69 (1959).CrossRefGoogle Scholar
  10. 10.
    B.I. Bolkaks, “Diffusion in Semiconductors”, Translated by J.I. Garasso, Infosearch Ltd., London (1963).Google Scholar
  11. 11.
    B.I. Bolkaks, “Diffusion in B.C.G. Metals”, Am. Soc. Metals, Metals Park, Ohio (1965).Google Scholar
  12. 12.
    J. Grank and G.S. Park, “Diffusion in Polymers”, Academic Press, London (1968).Google Scholar
  13. 13.
    G.S. Hartley, Trans. Farad. Soc., 42, 6 (1946).CrossRefGoogle Scholar
  14. 14.
    A. Smigelskas and E. Kirkendall, Trans. AIME, 171. 130 (1947).Google Scholar
  15. 15.
    G.S. Hartley and J. Crank, Faras. Farad. Soc., 45, 801 (1949).CrossRefGoogle Scholar
  16. 16(a).
    L.S. Darken, Trans. AIME, 174. 184 (1948).Google Scholar
  17. 16(b).
    L.S. Darken and Gurry A, Physical Chemistry of Metals, McGraw Hill (1963).Google Scholar
  18. 17.
    S. Prager, J. Chem. Phys., 21, 1344 (1953).CrossRefGoogle Scholar
  19. 18.
    R.P. Smith, Acta Met., 1: 578 (1953).CrossRefGoogle Scholar
  20. 19.
    R.M. Barrer, Proc Phys. Soc., 58, 32 (1946).CrossRefGoogle Scholar
  21. 20.
    H.L. Frisch, J. Phys. Chem. Wash., 61, 93 (1957).CrossRefGoogle Scholar
  22. 21.
    B. Rosen and J.H. Singleton, J. Polym. Sci., 25, 225 (1957).CrossRefGoogle Scholar
  23. 22.
    J.H. Huldy, J. Appl. Polym. Sci., 8, 2883 (1964).CrossRefGoogle Scholar
  24. 23.
    H.S. Carslaw and J.C. Jaeger, Conduction of heat in Solids11, Oxford Univ. Press, London (1947).Google Scholar
  25. 24.
    G. Matano, Jap. J. Phys., 8, 109 (1932–3).Google Scholar
  26. 25.
    O.S. Hartley, J.E. Steedly and L.D. Parsons, (p. 51–75 of ref. 11).Google Scholar
  27. 26.
    F.R. Winslow, A Fortran Program for Calculating Diffusion Coefficients and Plotting Penetration Curves, ORNL-TM-726 (1963).Google Scholar
  28. 27.
    E. Nebauer, Phys. stat. sol., 36, K63 (1969).CrossRefGoogle Scholar
  29. 28.
    A Bolk, Acta. Met., 9, 632 (l96l).CrossRefGoogle Scholar
  30. 29.
    C.T. Tomizuka, “Methods in experimental physics”, vol. 6, Acad. Press, New York, pages 364–73 (1959).Google Scholar
  31. 30.
    T. Gillespie and B.M. Williams, J. Polym. Sci., A-1, 4, 933 (1966).CrossRefGoogle Scholar
  32. 31.
    H.C. Gatos and A.D. Kurtz, J. Metals, 6, 616 (1954).Google Scholar
  33. 32.
    A.A. Zhukhovitsky, Conf. Acad. Sci., USSR on “Peaceful Uses of Atomic Energy”, Washington D.G. 1956.Google Scholar
  34. 33a).
    G.C. Hartley, Trans. Farad. Soc., 46, 820 (1949).CrossRefGoogle Scholar
  35. 33b).
    R.E. Barker Jr, J. Polym. Sci., 58, 583 (1962).CrossRefGoogle Scholar
  36. 34.
    A.S. Nowick, “Progress in Metal Physics, Vol. 4,” Chapter 1 (1953).Google Scholar
  37. 35.
    R. Gibala and O.A. Wert, (pp: 131–149 in ref. 11).Google Scholar
  38. 36.
    E.O. Stejskal and co-workers, J. Chem. Phys., 43, 288 (1965)CrossRefGoogle Scholar
  39. 36a.
    ibid. 43, 1068 (1965).Google Scholar
  40. 37.
    R.E. Norberg and C.P. Slichter, Phys. Rev., 83, 1074 (l95l).CrossRefGoogle Scholar
  41. 38.
    D.W. McGall and co-workers, J. Polym. Sci., A1, 1709 (1963).Google Scholar
  42. 39.
    W.O. Drailap Jr, Phys. Rev., 94, 1531 (1954).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • V. Ramakrishna
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyNew Delhi-29India

Personalised recommendations