Models for Simultaneous Diffusion and Chemical Reaction of Oxygen within the Intact Red Cell of Whole Blood

  • Ronald C. Menke
  • Daniel Hershey


A great amount of work has been done in the area of the oxygenation of blood. Studies have been devoted to the diffusion of ligand gases through plasma, hemoglobin solutions, and whole blood. Chemical reaction studies have been made testing various kinetic models. Much work has been done with hemoglobin solutions and millipore membranes to simulate the environment within the red cell. Fleischman (7) has presented a survey of some of the pertinent work done in this field. Of more interest to this discussion are the studies that have involved the simultaneous considerations of oxygen diffusion and chemical reaction with hemoglobin in the intact red cell of whole blood.


Effective Diffusion Coefficient Equilibrium Curve Oxygen Gradient Dynamic Curve Percent Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bird, R.B.; W.E. Stewart; E.N. Lightfoot: Transport Phenomena, John Wiley (1960).Google Scholar
  2. 2.
    Bloch, E.H.: “A Quantitative Study of the Hemodynamics in the Living Microvascular System,” Am. J. Anat. 110, pp 125–45 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    Churchill, R.Y.: “Complex Variables and Applications,” McGraw-Hill, 2nd Edition, New York, N. Y., (1960).Google Scholar
  4. 4.
    Collins, R.E.: “Transport of Gases Through Hemoglobin Solutions,” Science 133, pp 1593, (1961).PubMedCrossRefGoogle Scholar
  5. 5.
    Enna, T.: ‘Molecular Collision Exchange Transport of O2 by Hemoglobin “ Froc. Nat. Acad. Sci. U.S.A. 51, pp. 247, (1964).CrossRefGoogle Scholar
  6. 6.
    Fatt, I.: R.C. LaForce; “Theory of Oxygen Transport Through Hemoglobin Solutions,” Science 133, pp 1919, (1961).PubMedCrossRefGoogle Scholar
  7. 7.
    Fleischman, M. and Hershey, D.: “Simultaneous Diffusion and Chemical Reaction of Oxygen in Whole Blood,” Chemical Engineering Symposium Series, 1970 (in Press)Google Scholar
  8. 8.
    Forster, R.E.: “Rate of Gas Uptake by Red Cells,” in: Handbook of Physiology, Section 3, Respiration, Vol. 1, Edited by W.O. Fenn and H. Rahn. American Physiological Society, Washington D.C., pp 827–37, (1964).Google Scholar
  9. 9.
    Gibson, Q.H.; F. Kreuzer; E. Meda; F. Boughton: “The Kinetics of Human Hemoglobin in Solution and in the Red Cell at 37°C,” J. Physiol. (London) 129, pp 65–69, (1955).Google Scholar
  10. 10.
    Gibson, Q.H.: “The Kinetics of Reactions Between Hemoglobin and Gases,” Ch. 1 in Progress in Biophysics and Biophysical Chemie, J.A.V. Butler and B. Katz, Eds., Pergammon Press, 1959 ).Google Scholar
  11. 11.
    Grote, J.; g. Thews: “Die Bedingunger fur die Sauerstoffversorgung des Herzmuskelgewebes ” Pflugers Arch. ges. Physiol. 276, pp 142–165, (1962).CrossRefGoogle Scholar
  12. 12.
    Hesselberth, J.F.: “Simultaneous Diffusion and Chemical Reaction of Oxygen in Whole Blood in a Wetted-Wall Column,” PhD Thesis, Univ. of Cincinnati, (1968)Google Scholar
  13. 13.
    Karhan, T.L. and Hershey, D.: “Equilibrium and Diffusion of the 02-Blood System,” A.I. CH. E. Journal, 14, 969–973 (1968).CrossRefGoogle Scholar
  14. 14.
    Kernohan, J.C.: “Kinetics of the Reactions of Two Sheep Hemoglobins with 02 and CO,” J. Physiol. 155, pp 580–88, (1961).PubMedGoogle Scholar
  15. 15.
    Kreuzer, F.; W.Z. Yahr: “Influence of the Red Cell Membrane on the Diffusion of Oxygen,” J. Appl. Physiol. 15, pp 1117, (1960).PubMedGoogle Scholar
  16. 16.
    Marx, T.I.; et. al.: “Diffusion of Oxygen into a Film of Whole Blood,” J. Appl. Physiol. 15, pp 1123–9, (1960).PubMedGoogle Scholar
  17. 17.
    Neale, J.B.: Laboratory Medicine-Hemotology, C. V. Mosby, St. Louis, (1962).Google Scholar
  18. 18.
    Menke, R.C.: “Models for Simultaneous Diffusion and Chemical Reaction of Oxygen Within the Intact Red Cell of Whole Blood,” PhD Thesis, Univ. of Cincinnati, (1970)Google Scholar
  19. 19.
    Miller, C.; et. al.: “Mass Transfer of Oxygen into Blood Using a Wetted-Wall Column,” Chemical Engineering in Medicine and Biology, D. Hershey, Editor, Plenum Press, N. Y. 1967.Google Scholar
  20. 20.
    Mochizuki, M.; J.I. Fukuoka: “The Diffusion of Oxygen Inside the Red Cell,” Japan. J. Physiol. 8, pp 206–24, (1958).CrossRefGoogle Scholar
  21. 21.
    Moll, W.: “Measurements of Facilitated Diffusion of Oxygen in Red Blood Cells at 37°C,” Pflugers Arch. 305, pp 269–278, (1969).PubMedCrossRefGoogle Scholar
  22. 22.
    Moll, W.: “The Influence of Hemoglobin Diffusion on Oxygen Uptake and Release by Red Cells,” Respiration Physiology 6, pp 1–15, (1968/69)Google Scholar
  23. 23.
    Perutz, M.F.: “Submicroscopic Structure of the Red Cell,” Nature 161, pp 204, (1948).PubMedCrossRefGoogle Scholar
  24. 24.
    Peters, J.P.; D.D. van Slyke: Quantitative Clinical Chemistry, Williams and Wilkins, Baltimore, Vol. II, (1932).Google Scholar
  25. 25.
    Roughton, F.J.W.: “Diffusion and Chemical Reaction velocity as Joint Factors in Determining the Rate of Uptake of Oxygen and Carbon Monoxide by the Red Blood Corpuscle,” Proc. Roy. Soc. B 111, pp 1–36, (1932).CrossRefGoogle Scholar
  26. 26.
    Roughton, F.J.W.: “Diffusion and Simultaneous Chemical Reaction Velocity in Hemoglobin Solutions and Red Cell Suspensions,” Ch. 2 in reference 10.Google Scholar
  27. 27.
    Sendroy, J.; R.T. Dillon; D.D. van Slyke: “Studies of Gas and Electrolyte Equilibrium in Blood,” J. Biol. Chem. 105, pp 597–632, (1934).Google Scholar
  28. 28.
    Spiegel, M.R.: Theory and Problems of Laplace Transforms, Schaum’s Outline. Series, Schaum Pub. Co. N. Y., (1965).Google Scholar
  29. 29.
    Taylor, A.E.: Advanced Calculus, pp 51–52, Ginn and Co., New York, N. Y., (1955).Google Scholar
  30. 30.
    Taylor, A.E.: Ibid. pp 118–120.Google Scholar
  31. 31.
    Taylor, A.E.: Ibid. pp 619.Google Scholar
  32. 32.
    Wang, J.H.: “Transport of Oxygen Through Hemoglobin Solutions,” Science 133, pp 1770, (1961).PubMedCrossRefGoogle Scholar
  33. 33.
    Weissman, M.H.; L.F. Mockros: “Oxygen Transfer to Blood Flowing in Round Tubes,” 19th Annual. Conference on Engineering in Medicine and Biology, San Francisco, (1966).Google Scholar
  34. 34.
    Whittam, R.: Transport and Diffusion in Red Blood Cells, Williams and Wilkins, Baltimore, (1964).Google Scholar
  35. 35.
    Wintrobe, M.M.: Clinical Hematology, Lea and Febger, Philadelphia, (1961).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Ronald C. Menke
    • 1
  • Daniel Hershey
    • 1
  1. 1.Department of Chemical and Nuclear EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations