Skip to main content

The Oxygenation of Blood in Artificial Membrane Devices

  • Chapter
Blood Oxygenation

Abstract

The use of an extracorporeal “heart-lung machine” system to replace heart and lung function in a surgical patient is anincreasingly common event in medicine today. The most widely-used gas exchange devices (artificial lungs) in the heart-lung systems are still of the type that contact the blood directly with the gas phase, even though it is well known that prolonged exposure of blood to this high-energy interface causes toxic degradation (8, 30, 37) resulting in an unusually high mortality rate for procedures longer than a few hours duration. Presumably the reason for the continued use of gas contact devices is that rapid surgical procedures have been developed and taking into account factors such as reliability, cost, and convenience, surgeons find the gas contact devices to be adequate. For the long term support of a patient, however, it is agreed that direct gas contact devices cannot be used (15, 25, 29, 37).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Buckles, R.G., E.W. Merrill, and E.R. Gilliland. 1968 “An Analysis of Oxygen Absorption in a Tubular Membrane Oxygenator”, AIChE Jour., 14, 5: 703.

    CAS  Google Scholar 

  2. Carslaw, H.S. and J.C. Jaeger. 1959. Conduction of Heat in Solids. The Oxford University Press, London, England.

    Google Scholar 

  3. Colton, C.K., and R.F. Drake. 1969. “Analysis of VIVO deoxygenation of human blood: A feasibility study for an implantable biological fuel cell’. Trans, Amer Soc. Antif. Int. Organs. 15: 187

    Google Scholar 

  4. Colton, C.K., K.A. Smith, E.W. Merrill. 1969. “Diffusion of Organic Solutes in Plasma and Whole Blood,” Proceeding 8th ICMBE, Chicago, Illinois. Session 23–7.

    Google Scholar 

  5. Colton, C.K. 1969. Permeability and Transport Studies in Batch and Flow Dialyzers with Applications to Hemodialysis, Ph.D. Thesis, M.I.T.

    Google Scholar 

  6. Crank, J., and G.S. Park. 1968 Diffusion in Polymers. Academic Press, New York.

    Google Scholar 

  7. DeGroot, S.R., and P. Mazur. 1962. Non-equilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  8. Dobell, A. C., M. Mitri, R. Galva, E. Sarkozy, and D. R. Murphy. 1965. “Biologic Evaluation of Blood After Prolonged Recirculation Through Film and Membrane Oxygenators.” Ann. Surg. 161: 617

    Article  PubMed  CAS  Google Scholar 

  9. Drinker, P.A., R.H. Bartlett, R.M. Bialer, and B.S. Noyes,Jr. “Augmentation of Membrane Gas Transfer by induced secondary flows”. (in press) Surgery

    Google Scholar 

  10. Enns, T., 1967. “Facilitation by Carbonic Anhydrase of Carbon Dioxide Transport”. Science, 155, 3758: 44

    Article  PubMed  CAS  Google Scholar 

  11. Enns, T., 1969. “Transport of Gases Across the Red Cell Membrane”, Red Cross Symposium on the Red Cell Membrane, Washington, D. C.

    Google Scholar 

  12. Forster, R. E., 1964. “Rate of Gas Uptake by Red Cells”, Handbook of Physiology-Respiration, 32: 827

    Google Scholar 

  13. Fricke, H. 1924. “A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids”, Physical Rev., 24: 575.

    Google Scholar 

  14. Friedlander, S.K., and K.H. Keller. 1965. “Mass Transfer in Reacting Systems Near Equilibrium”, Chem. Eng. Sci. 20: 121

    Google Scholar 

  15. Gerbode, F., J. J. Osborn and M. L. Bramson. 1967. “Experiences in the Development of a Membrane Heart-Lung Machine” American J. of Surgery 114: 16

    Article  CAS  Google Scholar 

  16. Gertz, K. H., and Loeschcke. 1954. “Bestimmung der Diffusions - Koeffizienten von Hp, 02, N2, and He in Wasser und Blutserum bei Konstant Gehaltener Konvektion,” Z. Naturforschg

    Google Scholar 

  17. Goldsmith, H. L. 1968. “The Microrheology of Red Blood Cell Suspensions”. Biological Interfaces: Flows and Exchanges Proceedings of a Symposium sponsored by the New-York Heart Association; Little, Brown and Co., Boston.

    Google Scholar 

  18. Goldstick, T. K. 1966. Diffusion of Oxygen in Protein Solutions, Ph.D. Thesis, University of Calif., Berkeley.

    Google Scholar 

  19. Handbook of Physiology-Respiration, Vol. I, II. 1964. American Physiological Society, Washington, D.C.

    Google Scholar 

  20. Hershey, D., and J. Hesselberth. 1967. “Oxygenation of Whole Blood by Diffusion plus Homogeneous Reversible Chemical Reaction in a wetted wall column”. 60th Ann. Mtg., AIChE, New York.

    Google Scholar 

  21. Hershey,D., and T. Karhan. 1968. “Diffusion Coefficients for. Oxygen Transport in Whole Blood*, AIChE Jour., 14, 6: 969.

    Google Scholar 

  22. Hochmuth, R. M. Unpublished data.

    Google Scholar 

  23. Illickal, M.M., G.,E. Brown, Joseph M. Van de Water, W. H. Lee, D. B. Pall, and J. V. Maloney, Jr. 1967. “Boundary Layer Phenomenon in Membrane Oxygenators” Surgical Forum, 18: 131f

    Google Scholar 

  24. Keller, K.H., and S.K. Friedlander. 1966. “The Steady State Transport of Oxygen through Hemoglobin Solutions”, J. Gen. Physiol.)22, 4: 663

    Article  Google Scholar 

  25. Kolobow, T., W. Zapol, and J. Pierce. 1969. “High Survival and Minimal Blood Damage in lambs exposed to long term (1 week) veno-venous pumping with a polyurethane chamber roller pump with and without a membrane blood oxygenator”. Trans. Am. Soc. Artif. Int. Organs. 15: 172

    Google Scholar 

  26. Kreuzer, F., 1953. “Modellversuche zum Problem der Sauerstoff-diffusion in der Lungen”, Helv. Physiol. et Pharm. Acta., Suppl. I X

    Google Scholar 

  27. Kreuzer, F., and W. Z. Yahr. 1960. “Influence of the Red Cell Membrane on Diffusion of Oxygen”, J. Appl. Physiol., 15, 6: 1117.

    PubMed  CAS  Google Scholar 

  28. Lande, A.J., S. J. Fillmore, V. Subramanian, R. N. Tiedemann, R.G. Carlson, J.A. Bloch, and C.W. Lillehei. 1969. “24+ hour venous-arterial perfusions of awake dogs with a sample membrane oxygenator”, Trans. Amer. Soc. Artif. Int. Organs, 15: 181.

    Google Scholar 

  29. Lee, W.H., Jr.,D. Krumhaar, E.W. Fonkalsrud, D.A. Schjeide, and J. V. Maloney, Jr. 1961. “Denaturation of Plasma Proteins as a Cause of Morbidity and Death after Intracardiac Operations”. Surgery 50: 29.

    PubMed  CAS  Google Scholar 

  30. Martisovits, V., and S. Veis. 1967. “Quantitative description of Blood Oxygenation process in oxygenator for extra corporal circulation”, Bulletin of Mathematical Biophysics. 22: 485.

    Article  Google Scholar 

  31. Marx, T. I., W. E. Snyder, A. D. St. John, and Calvin E. Moeller. 1960. “Diffusion of oxygen into a film of whole blood”, J. Appl. Physiol. 15: 1123

    Google Scholar 

  32. Merrill, E.W., E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, and R. E. Wells. 1963. “Rheology of Human Blood Near and at Zero Flow”. Biophys J. 3: 199.

    Article  PubMed  CAS  Google Scholar 

  33. Merrill, E. W., A.M. Benis, E. R. Gilliland, T. K. Sherwood, E. W. Salzman. 1965. “Pressure-Flow Relations of Human Blood in Hollow Fibers at Low Flow Rates,” J. Appl. Physiol. 20: 954.

    Google Scholar 

  34. Merrill, E. W., and Pelletier, G. A., 1967. “Viscosity of Human Blood: Transition from Newtonian to Non-Newtonian”. J. Appt. Physiol., 23: 178.

    Google Scholar 

  35. Moll, W. 1966. “The Diffusion Coefficient of Hemoglobin”, Resp. Physiol., 1: 357.

    Google Scholar 

  36. Peirce II, E.C., J.J. Corrigan, B.B. Kent, C.L. Cate, R.L. Johnson, and A.E. Dreves. 1969. “Comparitive trauma to blood in one disc oxygenator and membrane lung”. Trans. Amer. Soc. Artif. Int. Organs. 15: 33.

    Google Scholar 

  37. Pircher, L. 1952. Helv. Physiol. Pharm. Acta., 10: 110.

    Google Scholar 

  38. Ratan, R.S., G.F. Bennett, P.L. Bonin, W.A. McAlpine and M.W. Selman. 1967. “Experimental evaluation of a rotating membrane oxygenator”, Jour. of Thoracic and Cardiovascular Surgery, 53: 519.

    CAS  Google Scholar 

  39. Roughton, F. J. W. 1963. “Kinetics of Gas Transport in Blood”, Brit. Med. Bull. 19: 80.

    Google Scholar 

  40. Roughton, F.J.W. 1964. “Transport of Oxygen and Carbon Dioxide”, Handbook of Physiology - Respiration, 31: 767.

    Google Scholar 

  41. Satterfield, C.N., and T.K. Sherwood. 1963. The Role of Diffusion in Catalysis. Addison-Wesley, Inc. Massachusetts.

    Google Scholar 

  42. Shirley, Y.E., 1968. Facilitated Transport of Carbon Dioxide, M.S. Thesis, University of Minnesota.

    Google Scholar 

  43. Smith, J. M. 1956. Chemical Engineering Kinetics. McGraw-Hill, Inc. New York.

    Google Scholar 

  44. Snell, F.M. 1965. “Facilitated Transport of Oxygen through Solutions of Hemoglobin”, J. Theoret. Biol. 8: 469.

    Google Scholar 

  45. Spaeth, E.E. and S.K. Friedlander. 1967. “The Diffusion of Oxygen, Carbon Dioxide, and Inert Gas in Flowing Blood”, Biophys. J. 7: 827.

    Google Scholar 

  46. Spinak, R. B. 1968. Transport of Carbon Dioxide in Erythrocytes, M. S. Thesis, University of Minnesota.

    Google Scholar 

  47. Stein, T. R. 1968. Augmented Diffusion of Oxygen. Ph.D. Thesis, University of Minnesota.

    Google Scholar 

  48. Thews, G. 1968. “The theory of Oxygen Transport and its Application to Gaseous Exchange in the Lung”, in Oxygen Transport in Blood and Tissue, Georg Thieme Verlag, Stuttgart, Germany.

    Google Scholar 

  49. Ward, W.J.,and Robb, W.L. 1967. “Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide across a Liquid Film”, Science, 156: 1481.

    Google Scholar 

  50. Weissman, M. H., and L.F. Mocicros. 1969. “Oxygen and Carbon Dioxide transfer in Membrane oxygenators” Med and biol. Engng. 7: 169

    CAS  Google Scholar 

  51. Wittenberg, J.B. 1966. “The Molecular Mechanism of Hemoglobin-Facilitated Oxygen Diffusion”, J. Biol. Chem., 241: 104.

    Google Scholar 

  52. Yoshida, F. and N. Oshima, 1966. “Diffusivity of Oxygen in Blood serum,” J. Appl. Physiol., 21; 915.

    Google Scholar 

  53. Zingg, W. 1967. “Membrane oxygenator for infants”, Trans, Amer. Soc. Artif. Int. Organs. 13: 334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Spaeth, E.E. (1970). The Oxygenation of Blood in Artificial Membrane Devices. In: Hershey, D. (eds) Blood Oxygenation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1857-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1857-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1859-0

  • Online ISBN: 978-1-4684-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics