Advertisement

Parametric Optics

  • J. A. Giordmaine

Abstract

The purpose of this paper is to discuss three examples of parametric field interactions which have recently become important in optics: optical parametric oscillation, parametric fluorescence, and the stimulated Raman effect. By a parametric interaction we refer to a process in which the application of a field Ep leads to regenerative amplification of two fields Es and Ei with a phase relation of the form
$$psi _{p} - ({\psi _{s}} + {\psi _{i}}) = \pi /2$$
(1)
maintained among the fields. The quantities Ep,s.i may in principle represent any classical fields. In quantum mechanics the elementary parametric process is an interaction of three bosons, e.g., the annihilation of a photon and the creation of a photon and an optical or acoustic phonon as in the stimulated Raman or Brillouin effect, the creation of a photon and a polariton as in the Raman effect involving an infra red active lattice vibration, or simply the creation of two photons as in optical parametric oscillation.

Keywords

Pump Power Parametric Oscillator Phase Match Laser Pump Stimulate Raman Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. LOUISELL, Coupled Modes and Parametric Electronics, John Wiley and Sons, Inc., New York (1969)Google Scholar
  2. 2.
    W. H. LOUISELL, A. YARIV, and A. E. SIEGMAN, Phys. Rev., 124, 1646(1961)ADSMATHCrossRefGoogle Scholar
  3. 3.
    B. R. MOLLOW and R. J. GLAUBER, Phys. Rev., 160, 1076(1967)ADSCrossRefGoogle Scholar
  4. 4.
    B.R. MOLLOW and R. J. GLAUBER, Phys. Rev., 160, 1097(1967)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. GLAUBER, in Quantum Optics and Electronics, Ed. C. de Witt et al. Gordon and Breach, New York, p. 63 (1964)Google Scholar
  6. 6.
    W. W. MUMFORD, Proc. Instn. Radio Engrs., 48, 848(1960)Google Scholar
  7. 7.
    H. SUHL, J. Appl. Phys., 28, 1255(1957)ADSCrossRefGoogle Scholar
  8. 8.
    P. A. FRANKEN, A. E. HILL, C. W. PETERS, and G. WEINREICH, Phys. Rev. Letters, 7, 118(1961)ADSCrossRefGoogle Scholar
  9. 9.
    J. DUCUING, Proc. of the International Summer School of Physics, Enrico Fermi, Course 42, Quantum Optics, ed. by R.J. G. Glauber, Academic Press, New York (1969)Google Scholar
  10. 10.
    N. BLOEMBERGEN, Nonlinear Optics, W.A.Benjamin, Inc., New York (1965)Google Scholar
  11. 11.
    J. A. ARMSTRONG, N. BLOEMBERGEN, J. DUCUING, and P. S. PERSHAN, Phys. Rev., 127, 1918 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    P. S. PERSHAN, Phys. Rev., 130, 919(1963)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    G. D. BOYD and D. A.KLEINMAN, J. Appl. Phys. (to be published). A useful discussion of the definition of the nonlinear coefficients is given in Appendix 2Google Scholar
  14. 14.
    J. F. NYE, Physical Properties of Crystals, Oxford (1960)Google Scholar
  15. 15.
    D. A. KLEINMAN, Phys. Rev., 126, 1977(1962)ADSCrossRefGoogle Scholar
  16. 16.
    P. L. KELLEY, J. Chem. Phys. Solids, 24, 607(1963)ADSCrossRefGoogle Scholar
  17. 17.
    P. J. PRICE, Phys. Rev., 130, 1792(1963)ADSCrossRefGoogle Scholar
  18. 18.
    H. CHENG and P. B. MILLER, Phys. Rev., 134, A683 (1964)ADSCrossRefGoogle Scholar
  19. 19.
    J.F. WARD, Rev. Mod. Phys., 37, 1(1965)ADSCrossRefGoogle Scholar
  20. 20.
    P. A. FRANKEN and J. F. WARD, Rev. Mod. Phys., 35, 23(1963)ADSMATHCrossRefGoogle Scholar
  21. 21.
    C. G. B. GARRETT and F. N. H. ROBINSON, Ieee J. Quantum Elec, Qe-2, 328(1966)ADSCrossRefGoogle Scholar
  22. 22.
    F.N.H. ROBINSON, Bell System tech. J., 46, 913(1967)Google Scholar
  23. 23.
    J. A. GIORDMAINE, Phys. Rev., 138, A1599 (1965)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    R. C. MILLER, Appl. Phys. Letters, 5, 17(1964)ADSCrossRefGoogle Scholar
  25. 25.
    P. P. BEY, J. F. GIULIANI, and H. RABIN, Phys. Rev. Letters, 19,819(1967)ADSCrossRefGoogle Scholar
  26. 26.
    J. A. GIORDMAINE, Phys. Rev. Letters, 8, 19(1962)ADSCrossRefGoogle Scholar
  27. 27.
    P-D. MAKER, R. W. TERHUNE, M. NISENHOFF, and C. M. SAVAGE, Phys. Rev. Letters, 8, 21 (1962)ADSCrossRefGoogle Scholar
  28. 28.
    R. C. MILLER, G. D. BOYD, and A. SAVAGE, Appl. Phys. Letters, 6,77(1965)ADSCrossRefGoogle Scholar
  29. 29.
    A. ASHKIN, G. D. BOYD, J. M. DZIEDZIC, R. G. SMITH, A. A. BALLMAN, H. J. LEVINSTEIN, and K. NASSAU, Appl. Phys. Letters, 9, 72(1966)ADSCrossRefGoogle Scholar
  30. 30.
    F. S. CHEN, J. Appl. Phys., 38, 3418(1967)ADSCrossRefGoogle Scholar
  31. 31.
    L. G. VAN UITERT, S. SINGH, H. J. LEVINSTEIN, J. E. GEUSIC and W. A BONNER, Appl. Phys. Letters, 11, 161(1967).ADSCrossRefGoogle Scholar
  32. 31a.
    L. G. VAN UITERT, S. SINGH, H. J. LEVINSTEIN, J. E. GEUSIC and W. A BONNER, Appl. Phys. Letters, 12, 224(1968)ADSCrossRefGoogle Scholar
  33. 32.
    J. E. GEUSIC, H. J. LEVINSTEIN, J.J. RUBIN, S. SINGH, and L.G. VAN UITERT, Appl. Phys. Letters, 11, 269(1967), 12, 224(1968)CrossRefGoogle Scholar
  34. 33.
    J. A. GIORDMAINE and R. C. MILLER, Phys. Rev. Letters, 14, 973(1965)ADSCrossRefGoogle Scholar
  35. 34.
    J. A. GIORDMAINE and R. C. MILLER, in Physics of Quantum Electronics, Ed. P. L. Kelley et al., McGraw-Hill Book Co., New York, p. 31 (1966)Google Scholar
  36. 35.
    The corresponding expressions for P used in [33J and [34] are too small by a factor of 2, and the expressions for should therefore be multiplied by 2. Since the value d15 quoted in [33] and [34] is now known to be too large by a factor of 2.6 (Table I), the calculated threshold power in [33] and [34] is approximately correct.Google Scholar
  37. 36.
    A. YARIV and W. H. LOUISELL, Ieee J. Quantum Elect., QE-2, 418 (1966)ADSCrossRefGoogle Scholar
  38. 37.
    G.D. BOYD and A. ASHKIN, Phys. Rev., 146, 187(1966)ADSCrossRefGoogle Scholar
  39. 38.
    R. C. MILLER and W. A. NORDLAND, Appl. Phys. Letters, 10, 53(1967)ADSCrossRefGoogle Scholar
  40. 39.
    J. A. GIORDMAINE and R. C. MILLER, Appl. Phys. Letters, 9, 298(1966)ADSCrossRefGoogle Scholar
  41. 40.
    S. A. AKHMANOV, A. I. KOVRIGIN, V. A. KOLOSOV, A. S. PISKARSKAS, V. V. FADEEV, and R. V. KHOKHLOV, Zhetf Pis’ma, 3,372(1966);Google Scholar
  42. 40a.
    S. A. AKHMANOV, A. I. KOVRIGIN, V. A. KOLOSOV, A. S. PISKARSKAS, V. V. FADEEV, and R. V. KHOKHLOV, Soviet Phys. Jetp Letters, 3, 241 (1966)Google Scholar
  43. 41.
    L. B. Kreuzer, Appl. Phys. Letters, 10, 336(1967)ADSCrossRefGoogle Scholar
  44. 42.
    R. H. KINGSTON, Proc. Instn. Radio Engrs., 50, 472(1962)Google Scholar
  45. 43.
    N. M. KROLL, Phys. Rev., 127, 1207(1962)ADSCrossRefGoogle Scholar
  46. 44.
    S. A. AHKMANOV and R. V. KHOKHLOV, Zhetf, 43, 351(1962);Google Scholar
  47. 44a.
    S. A. AHKMANOV and R. V. KHOKHLOV, Soviet Phys. Jetp, 16, 252 (1963)ADSGoogle Scholar
  48. 45.
    J. A. GIORDMAINE and D. A. KLEINMAN, Efficient Optical Harmonic Generaticn, Parametric Amplification, Oscillation and Modulation, U.S. Patent 3,234,475, Feb. 8, 1966; (filed Dec. 11, 1961)Google Scholar
  49. 46.
    S. A. AKHMANOV and R. V. KHOKHLOV, Problemy nelineinoi optiki (Problems of Nonlinear Optics), Viniti, Moscow (1964); Usp. Fiz. Nauk, 88, 439(1965);Google Scholar
  50. 46a.
    S. A. AKHMANOV and R. V. KHOKHLOV, Problemy nelineinoi optiki (Problems of Nonlinear Optics), Soviet Phys. Uspekhi, 9, 210(1966)ADSCrossRefGoogle Scholar
  51. 47.
    S. A. AKHMANOV, V. G. DMITRIYEV, V. P. MODENOV, and V. V. FADEYEV, Radiotekhnika I Elektronika, 10, 649(1965);Google Scholar
  52. 47a.
    S. A. AKHMANOV, V. G. DMITRIYEV, V. P. MODENOV, and V. V. FADEYEV, Rad. Engng. electron. Phys., 12, 1841(1965)Google Scholar
  53. 48.
    Y. V. GRIGOREV, V. K. RUBENKO, and R. V. KHOKHLOV, Izv. Vyssh. Ucheb. Zaved. Radiofiz., 9, 932 (1966)Google Scholar
  54. 49.
    R. H. KINGSTON and A.I. MCWHORTER, Proc. Ieee, 53, 4(1965)CrossRefGoogle Scholar
  55. 50.
    A. YARIV, Ieee J. Quantum Elect., QE-2, 30 (1966)Google Scholar
  56. 51.
    S. E. HARRIS, Ieee J. Quantum Elect., QE-2, 701(1966)ADSCrossRefGoogle Scholar
  57. 52.
    S. E. HARRIS, Appl. Phys. Letters 9, 114(1966)ADSCrossRefGoogle Scholar
  58. 53.
    S. E. HARRIS, M. K. OSHVLAN, and R. L. BYER, Phys. Rev. Letters, 18, 732(1967)ADSCrossRefGoogle Scholar
  59. 54.
    D. MAGDE and H. MAHR, Phys. Rev. Letters, 18, 905(1967)ADSCrossRefGoogle Scholar
  60. 55.
    S.A. AKHMANOV, A. G. ERSHOV, V. V. FADEYEV, R. V. KHOKHLOV, O. N. CHUNAEV, and E. V. SHVOM, Zhetf Pis’ma 2, 458(1965);ADSGoogle Scholar
  61. 55a.
    S.A. AKHMANOV, A. G. ERSHOV, V. V. FADEYEV, R. V. KHOKHLOV, O. N. CHUNAEV, and E. V. SHVOM, Soviet Phys. JETP Letters 2, 285(1965)ADSGoogle Scholar
  62. 56.
    R. G. SMITH, J. G. SKINNER, J. E. GEUSIC and W. G. NILSEN, Appl. Phys. Letters 12, 97(1968)ADSCrossRefGoogle Scholar
  63. 57.
    R. L. BYER and S. E. HARRIS, Phys. Rev., 168, 1064(1968)ADSCrossRefGoogle Scholar
  64. 58.
    J. A. GIORDMAINE and R. C. MILLER (unpublished)Google Scholar
  65. 59.
    J. P. GORDON, W.H. LOUISELL, and L. R. WALKER, Phys. Rev. Letters, 129, 481(1963)ADSMATHGoogle Scholar
  66. 60.
    W. H. LOUISELL, Radiation and Noise in Quantum Electronics, McGraw-Hill Book Co., New York (1964)Google Scholar
  67. 61.
    W.G. WAGNER and R.W. HELLWARTH, Phys. Rev., 133, A915 (1964)ADSCrossRefGoogle Scholar
  68. 62.
    D. N. KLYSHKO, Zhetf Pis’ma, 6,490(1967);ADSGoogle Scholar
  69. 62a.
    D. N. KLYSHKO, Soviet Phys. JETP Letters, 6, 23(1967)ADSGoogle Scholar
  70. 63.
    T.G. GIALLORENZI and C.L. TANG, Phys. Rev., 166, 225(1968)ADSCrossRefGoogle Scholar
  71. 64.
    D. A. KLEINMAN, Buil. Am. Phys. Soc., 13, 439 (1968)Google Scholar
  72. 65.
    D. A. KLEINMAN, Phys. Rev., 174, 1027(1968)ADSCrossRefGoogle Scholar
  73. 66.
    A Review of the stimulated Raman effect is given in N. Bloembergen, Am. J. Phys., 35, 989 (1967)Google Scholar
  74. 67.
    M. MAIER, W. KAISER, M. STANKA, and J. A. GIORDMAINE, Proc. of the International Summer School of Physics, Enricc Fermi, Course 42, Quantum Optics, ed., by R.J.Glauber, (Academic Press, New York, 1969)Google Scholar
  75. 68.
    Y. R. SHEN, Phys. Rev., 155, 921(1967)ADSCrossRefGoogle Scholar
  76. 69.
    M.S. FREED HOFF, J. Chem. Phys., 47, 2554(1967)ADSCrossRefGoogle Scholar
  77. 70.
    E. T. JAYNES and F. W. CUMMINGS, Proc. IEEE, 51, 89 (1963);CrossRefGoogle Scholar
  78. 70a.
    R. P. FEYNMAN, F. L. VERNON, Jr., and R. W. HELLWARTH, J. Appl. Phys., 28, 49 (1957)ADSCrossRefGoogle Scholar
  79. 71.
    M. MAIER, W. KAISER, and J. A. GIORDMAINE, Phys. Rev. Letters, 17,1275(1966)ADSCrossRefGoogle Scholar
  80. 72.
    M. MAIER, W. KAISER J. A. GIORDMAINE, Phys. Rev., 177, 580(1969)ADSCrossRefGoogle Scholar
  81. 73.
    F. T. ARECCHI and R. BONIFACIO, Ieee J. Quantum Elect., Q.E.-1, 169(1965)ADSCrossRefGoogle Scholar
  82. 74.
    S. L. MCCALL and E. I. HAHN, Phys. Rev. Letters, 18, 908 (1967);ADSCrossRefGoogle Scholar
  83. 74.
    V. E. KHARTSIEV, Physics, 3, 129 (1967)Google Scholar
  84. 75.
    J. A. GIORDMAINE and W. KAISER, Phys. Rev., 144,676(1966) In eqs. (2) and (3) and subsequent equations, H’ and F should be multiplied by H’ Eq. (9) should read, ħω0(dδ dt)= - 2F(df/dt).ADSCrossRefGoogle Scholar
  85. 76.
    H. HSU and K. F. TITTLE, in Lasers and Applications, Ed. by W. S. C. Chang, Ohio State Univ., p. 192 (1963)Google Scholar

Copyright information

© Weizmann Science Press of Israel 1970

Authors and Affiliations

  • J. A. Giordmaine

There are no affiliations available

Personalised recommendations