Skip to main content

Optical Emission Spectroscopy

  • Chapter
  • 266 Accesses

Part of the book series: Monographs in Geoscience ((MOGEO))

Abstract

Optical emission spectroscopy includes the fields of flame-, arc-, and spark-induced emission phenomena in the UV, visible, and near IR regions of the electromagnetic spectrum. As a technique, it furnishes the analytical investigator with qualitative and quantitative information on the elemental composition of matter through simultaneous multielement determinations. Detection limits in the low-ppm range are quite common.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weise, E. K., History and Origin, in The Encyclopedia of Spectroscopy ,G. L. Clark, ed., Reinhold, New York, 1960.

    Google Scholar 

  2. Harrison, G. R., Lord, R. C., and Loofbourow, J. R., Practical Spectroscopy ,Prentice-Hall, Englewood Cliffs, N. J., 1963.

    Google Scholar 

  3. Kirchhoff, G., and Bunsen, R., Chemical Analysis by Means of Spectral Observations (in German), Pogg. Ann. Physik u. Chem. 110, 161 (1860).

    Article  Google Scholar 

  4. Gerlach, W., “The Correct Execution and Interpretation of Quantitative Spectrum Analysis” (in German), Z. Anorg. Chem. u í ,383 (1925).

    Google Scholar 

  5. Goldschmidt, V. M., and Peters, C. (in German), Nachr. Ges. Wiss. G öttingen, Math. Phys. Klasse ,165, 257 (1931).

    Google Scholar 

  6. Goldschmidt, V. M., and Peters, C. (in German), Nachr. Ges. Wiss. G öttingen, Math. Phys. Klasse ,2, 360, 528 (1931).

    Google Scholar 

  7. Goldschmidt, V. M., Berman, H., Hauptmann, H., and Peters, C. (in German), Nach. Ges. Wiss. G öttingen, Math. Phys. Klasse 3, 141, 235, 278, 371 (1933).

    Google Scholar 

  8. Goldschmidt, V. M., Hauptmann, H., and Peters, C., Rare Elements in Rock Analysis (in German), Naturwiss. 21, 363 (1933).

    Google Scholar 

  9. Goldschmidt, V. M., and Peters, C., The Geochemistry of Arsenic (in German), Nachr. Ges. Wiss. G òttingen, Math. Phys. Klasse, N. F. Fachgr. IV 1 ,11 (1934).

    Google Scholar 

  10. Goldschmidt, V. M., Bauer, H., and Witte, H., Geochemistry of the Alkali Metals. II. (in German), Nachr. Ges. Wiss. G öttingen, Math. Phys. Klasse, N. F. Fachgr. IV 1 ,39 (1935).

    Google Scholar 

  11. Fassel, V., History of Flame Emission Spectrochemical Methods ,paper presented at the Seventh National Meeting, SAS, Chicago, Ill., May 14, 1968.

    Google Scholar 

  12. Walters, J. P., Thirty Years of Emission Spectrochemical Development. The Spark Discharge ,paper presented at the Seventh National Meeting, SAS, Chicago, Ill., May 14, 1968.

    Google Scholar 

  13. Strock, L. W., Thirty Years of Development of D. C. Arc Spectrochemical Analysis Methods ,paper presented at the Seventh National Meeting, SAS, Chicago, Ill., May 14, 1968.

    Google Scholar 

  14. Herzberg, G., Atomic Spectra and Atomic Structure ,Dover, New York, 1944.

    Google Scholar 

  15. Richtmyer, F. K., Kennard, E. H., and Lauritsen, T., Introduction to Modern Physics ,McGraw-Hill, New York, 1955.

    Google Scholar 

  16. McNally, J. R., Atomic Spectra, in Handbook of Physics ,E. U. Condon and H. Odishaw, eds., Mc-Graw-Hill, New York, 1967, pp. 7–38–53.

    Google Scholar 

  17. Harrison, G. R., M.I.T. Wavelength Tables ,John Wiley & Sons, New York, 1939.

    Google Scholar 

  18. Grotrian, W., Graphical Presentation of the Spectra of Atoms and Ions with One, Two, and Three Valence Electrons. I, II ,J. Springer, Berlin, 1928.

    Google Scholar 

  19. Ahrens, L. H., and Taylor, S. R., Spectrochemical Analysis ,2nd Ed., Addison-Wesley, Reading, Mass., 1961.

    Google Scholar 

  20. Guide to Scientific Instruments, Science ,p. 158A, Nov. 28, 1967.

    Google Scholar 

  21. Buyers’ Guide, Industrial Research ,May 15, 1967.

    Google Scholar 

  22. Scribner, B. F., and Margoshes, M., Emission Spectroscopy, in Treatise on Analytical Chemistry ,Part I, I. M. Kolthoff and P. J. Elving, eds.. Vol. 6, pp. 3372–3379.

    Google Scholar 

  23. Gold Rush, 1967-Style, Spectrum Scanner ,Jarrell-Ash Company, 22, 2 (1967).

    Google Scholar 

  24. Stallwood, B. J., Air Cooled Electrodes for the Spectrochemical Analysis of Powders, J. Opt. Soc. Am. 44, 171 (1954).

    Article  Google Scholar 

  25. Boyd, B. R., and Goldblatt, A., Atmosphere Excitation in Non-Enclosed Spark Stands ,paper presented at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 1963.

    Google Scholar 

  26. Danielsson, A., Lundgren, F., and Sundkvist, G., The Tape Machine, I, II, and III, Spectrochim. Acta 1959, 122.

    Google Scholar 

  27. Strock, L. W., Spectrum Analysis with the Carbon Arc Cathode Layer ,A. Hilger, London, 1936.

    Google Scholar 

  28. Barnett, P. R., An Evaluation of Whole-Order, 1/2 Order, and 1/2 Order Reporting in Semiquantitative Spectrochemical Analysis, U.S. Geol. Survey Bull. 1084–H (1961).

    Google Scholar 

  29. Grimes, D. J., and Marranzino, A. P., Six-Step Field Standards for Semiquantitative Analysis of Rocks and Soils ,U.S. Geol. Survey, Denver, Colo., paper presented at the 1968 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 1968.

    Google Scholar 

  30. Decker, R. J., and Eve, D. J., Appl. Spectros. 22, 13, 263 (1968).

    Article  Google Scholar 

  31. Leys, J. A., and Dehm, R. L., Semiquantitative Industrial Chemical Analysis, in The Encyclopedia of Spectroscopy ,G. L. Clark, ed., Reinhold, New York, 1960, pp. 285–286.

    Google Scholar 

  32. Adamson, D. L., Stephens, J. D., and Tuddenham, W. M., Application of Mineralogical Principles and Infrared Spectra in Development of Spectrographic Techniques, Anal. Chem. 39, 574 (1967).

    Article  Google Scholar 

  33. Designation of Shapes and Sizes of Graphite Electrodes, in General Test Methods ,ASTM Standards Part 30, ASTM, Philadelphia, Pa. 1967, p. 334.

    Google Scholar 

  34. Stevens, R. E., et al. ,Second Report on a Cooperative Investigation of the Composition of Two Silicate Rocks, U.S. Geol. Survey Bull. 1113, 1 (1960).

    Google Scholar 

  35. Report of Nonmetallic Standards Committee of the Canadian Association for Applied Spectroscopy, Appl. Spectros. 15, 159 (1961).

    Article  Google Scholar 

  36. Webber, G. R., Second Report of Analytical Data for CAAS Syenite and Sulphide Standards, Geochim. Cosmochim. Acta 29, 229 (1964).

    Article  Google Scholar 

  37. Ingamells, C. O., and Suhr, N. H., Chemical and Spectrochemical Analysis of Standard Silicate Samples, Geochim. Cosmo Chim. Acta 27, 897 (1963).

    Article  Google Scholar 

  38. Flanagan, F. J., U.S. Geological Survey Silicate Rock Standards, Geochim. Cosmo chim. Acta 31, 289 (1966).

    Article  Google Scholar 

  39. Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral-Line Intensities ,NBS Mon. 32, Parts I and II, 1961.

    Google Scholar 

  40. Weast, R. C., ed.. Handbook of Chemistry and Physics ,45th Ed., The Chemical Rubber Co., Cleveland, Ohio, 1964, p. E-41.

    Google Scholar 

  41. Quesada, A., and Dennen, W. H., Spectrochemical Determination of Water in Minerals and Rocks, Appl. Spectros. 21, 155 (1967).

    Article  Google Scholar 

  42. Slavin, M., Quantitative Analysis Based on Spectral Energy, Ind. Eng. Chem. Anal. Ed. 10, 407 (1938).

    Article  Google Scholar 

  43. Churchill, J. R., Techniques of Quantitative Spectrographic Analysis, Ind. Eng. Chem. Anal. Ed. 16, 653 (1944).

    Article  Google Scholar 

  44. Photographic Photometry in Spectrochemical Analysis, in ASTM Methods Chemical Analysis of Metals ,ASTM, Philadelphia, Pa., 1956, pp. 570–593.

    Google Scholar 

  45. Feldman, C., A Beam-Splitter for Use in Calibrating Spectrographic Emulsions ,paper presented at the Seventh National Meeting, SAS, Chicago, Ill., May 16, 1968.

    Google Scholar 

  46. Parodi, J. A., and Burch, W. G., Jr., A Study of Photographic Emulsion Calibration Techniques ,G.E., Hanford Atomic Products Operation, Richland, Wash., HW-28803, July 27, 1953.

    Google Scholar 

  47. Clarke, F. W., The Data of Geochemistry, U.S. Geol. Survey Bull. ,770 (1924).

    Google Scholar 

  48. Clarke, F. W., and Washington, H. S., The Composition of the Earth’s Crust, U.S. Geol. Survey PP 127 ,1924.

    Google Scholar 

  49. Goldschmidt, V. M., Geochemistry ,Clarenden Press, Oxford, 1954.

    Google Scholar 

  50. Green, J., Geochemical Table of the Elements for 1959, Geol. Soc. Am. Bull. 70, 1127 (1959).

    Article  Google Scholar 

  51. Turekian, K. K., and Wedepohl, K. H., Distribution of the Elements in Some Major Units of the Earth’s Crust, Geol. Soc. Am. Bull. 72, 175 (1961).

    Article  Google Scholar 

  52. Vinogradov, A. P., The Regularity of Distribution of Chemical Elements in the Earth’s Crust, Geokyhimiya 1, 6 (1956) (Engl. Transl. by Atomic Energy Research Establishment, Harwell, Berkshire, 1957).

    Google Scholar 

  53. Vinogradov, A. P., The Geochemistry of Rare and Dispersed Chemical Elements in Soils ,2nd Ed. (Engl. Transl. from the Russian by Consultants Bureau, New York, 1959).

    Google Scholar 

  54. Horn, M. K., and Adams, J. A. S., Computer-Derived Geochemical Balances and Element Abundances, Geochim. Cosmochim. Acta 30, 279 (1966).

    Article  Google Scholar 

  55. Warren, H. V., and Delavault, R. E., A History of Biogeochemical Investigation in British Columbia, Transactions of the Canadian Institute of Mining and Metallurgy 53, 236 (1950).

    Google Scholar 

  56. Mitchell, R. L., The Spectrographic Analysis of Soils, Plants, and Related Materials ,Commonwealth Bur. Soil Sci. Tec. Common. No. 44, 1948; reprinted with addendum, 1964.

    Google Scholar 

  57. Cruft, E. F., Trace Element Determinations in Soils and Stream Sediments by an Internal Standard Spectrographic Procedure, Econ. Geol. 59, 458 (1964).

    Article  Google Scholar 

  58. Bedrosian, A. J., Skogerboe, R. K., and Morrison, G. H., Direct Emission Spectrographic Method for Trace Elements in Biological Materials, Anal. Chem. 40, 854 (1968).

    Article  Google Scholar 

  59. Hendricks, R. L., Reisbick, F. B., Mahaffey, E. G., Roberts, D. B., and Peterson, M. N. A., Chemical Composition of Sediments and Intersticial Brines from the Atlantis II Discovery and Chain Deeps, in Hot Brines and Recent Heavy Metal Deposits in the Red Sea ,E. T. Degens and D. A. Ross, eds., Springer Verlag, New York, in press.

    Google Scholar 

  60. Young, E. J., Spectrographic Data on Cores from the Pacific Ocean and Gulf of Mexico, Geochim. Cosmochim. Acta 32, 466 (1968).

    Article  Google Scholar 

  61. Degens, E. T., Williams, E. G., and Keith, M. L., Environmental Studies of Carboniferous Sediments, I. Geochemical Criteria for Differentiating Marine and Freshwater Shales, Bull. Am. Assoc. Petrol. Geologists 41, 2427 (1957).

    Google Scholar 

  62. Joensuu, O. I., Spectrochemical Methods in Geochemistry ,paper presented at the Seventh National Meeting, SAS, Chicago, Ill., May 15, 1968.

    Google Scholar 

  63. Maxwell, J. A., The Laser as a Tool in Mineral Identification, Can. Mineral. 5, 727 (1963).

    Google Scholar 

  64. Snetsinger, K. G., and Keil, K., Microspectrochemical Analysis of Minerals with the Laser Microprobe, Amer. Mineral. 52, 1842 (1967).

    Google Scholar 

  65. Cruft, E. F., and Giles, D. L., Direct Reading Emission Spectrometry as a Geochemical Tool, Econ. Geol. 62, 406 (1967).

    Article  Google Scholar 

  66. Shaw, D. M., Spectrochemical Analysis of Silicates Using the Stallwood Jet, Can. Mineral 6, 467 (1960).

    Google Scholar 

  67. Joensuu, O. I., and Suhr, N. A., Spectrochemical Analysis of Rocks, Minerals, and Related Materials, Appl. Spectros. 14, 101 (1962).

    Article  Google Scholar 

  68. Harvey, C. E., Spectrochemical Procedures ,Applied Research Laboratories, Glendale, Calif., 1950.

    Google Scholar 

  69. Harvey, C. E., Semiquantitative Spectrochemistry ,Applied Research Laboratories, Glendale, Calif., 1964.

    Google Scholar 

  70. Nachtrieb, N. H., Principles and Practice of Spectrochemical Analysis ,McGraw-Hill, New York, 1950.

    Google Scholar 

  71. Moore, C. E., Atomic Energy Levels, U. S. Bur. Standards Circ. 467 ,Vol. I, 1949, Vol. II, 1952.

    Google Scholar 

  72. Zaidel, A. N., Prokof’ev, V. K., and Raiskll, S. M., Tables of Spectrum Lines ,Pergamon Press, New York, 1961.

    Google Scholar 

  73. Boumans, P. W. J. M., Theory of Spectrochemical Excitation ,Plenum Press, New York, 1966.

    Google Scholar 

  74. Bastron, H., Barnett, P. R., and Murata, K. K., Method for the Quantitative Spectrochemical Analysis of Rocks, Minerals, Ores, and Other Materials by a Powder dc Arc Technique, U. S. Geol. Survey Bull. 1084–G (1960).

    Google Scholar 

  75. Myers, A. T., Havens, R. G., and Dunton, P. J., A Spectrochemical Method for the Semiquantitative Analysis of Rocks, Minerals and Ores, U. S. Geol. Survey Bull. 1084–1 (1961).

    Google Scholar 

  76. Thompson, G., Paine, K., and Manheim, F., A Flexible Computer Program for Evaluation of Emission Spectrometric Data, Appl. Spectros. 23, 264 (1969).

    Article  Google Scholar 

  77. Decker, R. S., and Eve, D. J., dc Arc in Emission Spectrography, IV. Correction for Matrix Effects, Appl. Spectros. 23, 497 (1969).

    Article  Google Scholar 

  78. Margoshes, M., The Digilab 204%-Channel TVS Spectrometer ,paper presented at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 1970.

    Google Scholar 

  79. Gordon, W. A., Improvement of Analytical Precision Using a Servocontrolled dc Arc with Current Feedback ,paper presented at the Fifth National Meeting, SAS, Chicago, Ill., June 1966.

    Google Scholar 

  80. Helz, A. W., Walthall, F. G., and Berman, S., Computer Analysis of Photographed Optical Emission Spectra, Appl. Spectros. 23, 508 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Langheinrich, A.P., Roberts, D.B. (1971). Optical Emission Spectroscopy. In: Wainerdi, R.E., Uken, E.A. (eds) Modern Methods of Geochemical Analysis. Monographs in Geoscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1830-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1830-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1832-3

  • Online ISBN: 978-1-4684-1830-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics