Radiometric Techniques

  • L. Rybach
Part of the Monographs in Geoscience book series (MOGEO)

Abstract

The discovery of natural radioactivity radically affected developments in science and technology. The study of radioactive rocks and minerals yielded a vast amount of information on decay processes, half-lives, isotopic abun dances, etc. Now that these physical constants have been evaluated, today’s investigations aim towards the determination of abundance and distribution of the natural radioelements in the earth’s crust, in its upper mantle, in the atmosphere, and even in space.

Keywords

Mercury Radium Sedimentation Geochemistry Shale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miesch, A. T., Methods of computation for estimating geochemical abundance, U.S. Geol. Survey Prof. Paper 574–B, 1967.Google Scholar
  2. 2.
    Adams, J. A. S., Osmond, J. K., and Rogers, J. J. W., The geochemistry of thorium and uranium, in Physics and Chemistry of the Earth ,Pergamon Press, New York, 1959, Vol. 3, pp. 298–348.Google Scholar
  3. 3.
    Yokoyama, Y., Tobailem, J., Grjebine, T., and Labeyrie, J., Détermination de la vitesse de sédimentation océanique par une méthode non destructive de spéctrometrie gamma, Geochim. Cosmochim. Acta 32, 347 (1968).CrossRefGoogle Scholar
  4. 4.
    Birch, F., Heat from radioactivity, in Nuclear Geology ,H. Faul, ed., John Wiley & Sons, New York, 1954, pp. 148–174.Google Scholar
  5. 5.
    Wollenberg, H. A., and Smith, A. R., Radiogeologic studies in the central part of the Sierra Nevada batholith, California, J. Geophys. Res. 73, 1481 (1968).CrossRefGoogle Scholar
  6. 6.
    May, H., and Marinelli, L. D., Cosmic-ray contribution to the background of low-level scintillation spectrometers, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 463–480.Google Scholar
  7. 7.
    Kraner, H. W., Schroeder, G. L., and Evans, R. D., Measurements of the effects of atmospheric variables on Radon-222 flux and soil-gas concentrations, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 191–215.Google Scholar
  8. 8.
    Pensko, E., Wardaszko, T., and Wochna, P., Natural atmospheric radioactivity and its dependence on some geophysical factors, Atompraxis 14, 255 (1968).Google Scholar
  9. 9.
    Gustafson, P. F., and Brar, S. S., Measurement of γ-emitting radionuclides in soil and calculation of the dose arising therefrom, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 499–512.Google Scholar
  10. 10.
    Crouthamel, C. E., Applied Gamma-Ray Spectrometry ,Pergamon Press, Oxford, 1960, 443 pp.Google Scholar
  11. 11.
    Taylor, J. J., Application of gamma-ray buildup data to shield design, WAPD-RM-217, 1954.Google Scholar
  12. 12.
    Taylor, D., The Measurement of Radio Isotopes ,Methuen & Co., London, 1957, 132 pp.Google Scholar
  13. 13.
    Heath, R. L., Scintillation Spectrometry Gamma-Ray Spectrum Catalogue ,Phillips Petroleum Co., 1964.Google Scholar
  14. 14.
    Hill, C. R., Osborne, R. V., and Mayneord, W. V., Studies of α radioactivity in relation to man, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 395–405.Google Scholar
  15. 15.
    Bowie, S. H. U., Portable X-ray fluorescence analysers in the mining industry, Mining Magazine 106, 1 (1968).Google Scholar
  16. 16.
    Yagoda, H., Radioactive Measurements with Nuclear Emulsions ,John Wiley & Sons, New York, 1949, 356 pp.Google Scholar
  17. 17.
    Ragland, P. C., Autoradiographic investigations of naturally occurring materials, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 129–151.Google Scholar
  18. 18.
    Bowie, S. H. U., Autoradiography, in Physical Methods in Determinative Mineralogy ,J. Zussman, ed., Academic Press, London, 1967, pp. 467–473.Google Scholar
  19. 19.
    Adams, J. A. S., Laboratory γ-ray spectrometer for geochemical studies, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 485–497.Google Scholar
  20. 20.
    Wollehberg, H. A., and Smith, A. R., Radioactivity of cement raw materials, Sym posium on Geology of Cement Raw Materials, Indiana University, 1966, pp. 129–147.Google Scholar
  21. 21.
    Sonntag, C., Extremely low-level scintillation spectrometer. In Radioactive Dating and Methods of low-level Counting, IAEA Vienna, 1967, pp. 675–686.Google Scholar
  22. 22.
    Bowie, S. H. U., and Bisby, H., Methods of detecting and assessing low grade uranium deposits, J. Brit. Nucl. Ener. Soc. 14, 169 (1967).Google Scholar
  23. 23.
    Hand, J. E., Instrumentation for aerial surveys of terrestrial γ radiation, in The Natural Radiation Environment ,University of Chicago Press, Chicago, 1964, pp. 687–704.Google Scholar
  24. 24.
    Pitkin, J. A., Neuschel, S. K., and Bates, R. G., Aeroradioactivity surveys and geologic mapping, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 723–736.Google Scholar
  25. 25.
    Moxham, R. M., Some aerial observations on the terrestrial component of environmental γ radiation, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 737–746.Google Scholar
  26. 26.
    Morris, D. B., personal communication, 1969.Google Scholar
  27. 27.
    Baranow, V. I., Aeroradiometric prospecting for uranium and thorium deposits and the interpretation of gamma anomalies, Proc. Int. Conf. on Peaceful Uses of Atomic Energy ,Geneva, 1956, Vol. 6, pp. 740–743.Google Scholar
  28. 28.
    Davisson, C. M., and Evans, R. D., Gamma-ray absorption coefficients, Rev. Mod. Phys. 24, 79 (1952).CrossRefGoogle Scholar
  29. 29.
    Scott, J. H., Dodd, P. H., Droullard, R. F., and Mudra, P. J., Quantitative inter pretation of gamma-ray logs, Geophysics 26, 182 (1961).Google Scholar
  30. 30.
    Scott, J. H., Computer analysis of gamma-ray logs, Geophysics 28, 457 (1963).Google Scholar
  31. 31.
    Rybach, L., and Adams, J. A. S., Automatic analysis of the elements U, Th and K in solid rock samples by nondestructive gamma spectrometry, Proc. Int. Anal. Chem. Conf. Budapest ,1966, Vol. 2, pp. 323–330.Google Scholar
  32. 32.
    Rybach, L., and Adams, J. A. S., The radioactivity of the Ivory Coast tektites and the formation of the Bosumtwi Crater (Ghana), Geochim. Cosmochim. Acta 33, 1101 (1969).CrossRefGoogle Scholar
  33. 33.
    Heier, K. S., and Rogers, J. J. W., Radiometric determination of thorium, uranium and potassium in basalts and in two magmatic differentiation series, Geochim. Cosmo chim. Acta 27, 137 (1963).CrossRefGoogle Scholar
  34. 34.
    Salmon, L., Analysis of y-ray scintillation spectra by the method of least squares, AERE-Rept. 3640, 1961.Google Scholar
  35. 35.
    Grossman, W., Grundzüge der Ausgleichsrechnung, Springer Verlag, Göttingen, 1961, 406 p.Google Scholar
  36. 36.
    Comunetti, A. M., A new gain stabilizing system for scintillation spectrometry, Nucl. Instr. Meth. 37, 125 (1965).CrossRefGoogle Scholar
  37. 37.
    Adams, J. A. S., and Fryer, G. E., Portable y-ray spectrometer for field determination of thorium, uranium and potassium, in The Natural Radiation Environment ,Univ. of Chicago Press, Chicago, 1964, pp. 577–596.Google Scholar
  38. 38.
    Lovborg, L., A portable y-spectrometer for field use, Danish Atomic Energy Commission, Risö Rept. No. 168, 1967.Google Scholar
  39. 39.
    Doig, R., The natural gamma-ray flux: in-situ analysis, Geophysics 33, 311 (1968).Google Scholar
  40. 40.
    Heier, K. S., Uranium, thorium and potassium in eclogitic rocks, Geochim. Cosmo chim. Acta 27, 849 (1963).CrossRefGoogle Scholar
  41. 41.
    Lovering, J. F., and Morgan, J. W., Uranium and thorium abundances in possible upper mantle materials, Nature 197, 138 (1963).CrossRefGoogle Scholar
  42. 42.
    Nagasawa, H., and Wakita, H., Neutron activation analysis of potassium in ultra-basic rocks, Geochem. J. 1, 149 (1967).CrossRefGoogle Scholar
  43. 43.
    Eichholz, G., Hilborn, I., and McMahon, C, The determination of uranium and thorium in ores, Can. J. Phys. 31, 613 (1953).CrossRefGoogle Scholar
  44. 44.
    Bunker, C. M., and Bush, C. A., Uranium, thorium and radium analyses by gammaray spectrometry (0.184-0.352 million electron volts), U.S. Geol. Survey Prof. Paper 550-B, 1966, pp. 176–181.Google Scholar
  45. 45.
    Holland, H. D., Radiation damage and its use in age determination, in Nuclear Geology ,H. Faul, ed., John Wiley & Sons, New York, 1954, pp. 175–180.Google Scholar
  46. 46.
    Rosholt, J. N., Doe, B. R., and Tatsumoto, M., Evolution of the isotopic composition of uranium and thorium in soil profiles Bull. Geol. Soc. Amer. 77987 (1966).CrossRefGoogle Scholar
  47. 47.
    Goldberg, E. D., and Koide, M., Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26, 417 (1962).CrossRefGoogle Scholar
  48. 48.
    Scott, M. R., Thorium and uranium concentrations and isotope ratios in river sediments, Earth Plan. Sci. Letters 4, 245 (1968).CrossRefGoogle Scholar
  49. 49.
    Larsen, E. S., Keevil, N. B., and Harrison, H. C., Method for determining the age of igneous rocks, using the accessory minerals, Bull. Geol. Soc. Amer. 63, 1045 (1952).CrossRefGoogle Scholar
  50. 50.
    Hamilton, E. I., Applied Geochronology Academic Press, London, 1965, 267 pp.Google Scholar
  51. 51.
    Vitozzi, P., and Rapolla, A., Radioactivity of vesuvian effusive products former to 1631, Bull. Volc. 32, 136 (1969).Google Scholar
  52. 52.
    Thurber, D. L., Broecker, W. S., Blanchard, R. L., and Potratz, H. A., Uranium series ages of Pacific atoll coral, Science 149, 55 (1965).CrossRefGoogle Scholar
  53. 53.
    Cherry, R. D., Richardson, K. A., and Adams, J. A. S., Unidentified excess alpha-activity in the 4.4-MeV region in natural thorium samples, Nature 202, 639 (1964).CrossRefGoogle Scholar
  54. 54.
    Rybach, L., von Raumer, J., and Adams, J. A. S., A gamma spectrometric study of Mont Blanc granite samples, Pure and Applied Geophysics 63, 153 (1966).CrossRefGoogle Scholar
  55. 55.
    Hügi, Th., Köppel, V., De Quervain, F., and Rickenbach, E., Die Uranvererzungen bei Isérables (Wallis). Beitr. Geol. Schweiz, Geotechn. Serie, 1967, Lfg. 42.Google Scholar
  56. 56.
    Dietrich, V., Huonder, N., and Rybach, L., Uranvererzungen im Druckstollen Ferrera-Val Niemet. Beitr. Geol. Schweiz, Geotechn. Serie, 1967, Lfg. 44.Google Scholar
  57. 57.
    Rybach, L., Hafner, S., and Weibel, M., Die Verteilung von U-Th, Na, K und Ca im Rotondogranit, Schweiz. Min. Petr. Mitt. 42, 307 (1962).Google Scholar
  58. 58.
    Adams, J. A. S., and Lowder, W. M., eds., The Natural Radiation Environment ,Univ. Chicago Press, Chicago, 1964, p. 1069.Google Scholar
  59. 59.
    Grauert, B., and Arnold, A., Deutung diskordanter Zirkonalter der Silvrettadecke und des Gotthardmassivs (Schweizer Alpen), Contr. Mineral. and Petrol. 20, 34 (1968).CrossRefGoogle Scholar
  60. 60.
    Morgan, J. W., and Heier, K. S., Uranium, thorium and potassium in six U.S.G.S. standard rocks, Earth Plan. Sci. Letters 1, 158 (1966).CrossRefGoogle Scholar
  61. 61.
    Stevens, R. E., and others, Second report on a co-operative investigation of two silicate rocks, U.S. Geol. Survey Bull. 1113, 1 (1960).Google Scholar
  62. 62.
    Adams, J. A. S., Richardson, J. E., and Templeton, C. C, Determinations of thorium and uranium in sedimentary rocks by two independent methods, Geochim. Cosmo-chim. Acta 13, 270 (1958).CrossRefGoogle Scholar
  63. 63.
    Price, P. B. and Walker, R. M., A simple method of measurering low uranium con centrations in natural crystals, App. Phys. Let. 2, 23 (1963).CrossRefGoogle Scholar
  64. 64.
    Fisher, D. E., Homogenized fission track analysis of uranium: A modification for whole rock geological samples, Anal. Chem. 42, 414 (1970).CrossRefGoogle Scholar
  65. 65.
    Kleeman, J. D. and Lovering, J. F., Uranium distribution in rocks by fission-track registration in Lexan plastic, Science 156, 512 (1967).CrossRefGoogle Scholar
  66. 66.
    Bertine, K. K., Chan, L. H., and Turekian, K. K., Uranium determinations in deep-sea sediments and natural waters using fission tracks, Geochim. Cosmochim. Acta 34, 641 (1970).CrossRefGoogle Scholar
  67. 67.
    Fisher, D. E., Homogenized fission track analysis of uranium in some ultramafic rocks of known potassium content, Geochim. Cosmochim. Acta 34, 630 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • L. Rybach
    • 1
  1. 1.Institut für Kristallographie und PetrographieEidgenössische Technische HochschuleZurichSwitzerland

Personalised recommendations