Single Particle Wavefunctions in a Non-Local Potential

  • L. R. B. Elton
  • S. J. Webb
  • R. C. Barrett
Conference paper


The analysis of elastic electron scattering cross-sections and of shell separation energies, as obtained from the (p,2p) reaction, in terms of single-particle wavefunctions in lowest order in a potential well was at first (1) carried out in terms of an energy independent local potential. When this work was first reported, at the Paris Conference in 1964, Brueckner (2) pointed out that “there are impeccable theoretical reasons for believing that the potential must depend on the state of the particle”. For that reason, and because it soon became apparent that the shell separation energies could in fact not be fitted by a state-independent potential, sub-sequent analyses (3,4) used an energy dependent local potential. Other work (5,6), which has used an energy independent local poten-tial and been content to fit the separation energy of the least bound proton, cannot fit all the data.


Local Potential Elastic Electron Experimental Separation Energy Single Particle Distribution Elastic Electron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. R. Shaw, A. Swift, and L. R. B. Elton, Proc. Phys. Soc. 86, 513 (1965).CrossRefGoogle Scholar
  2. (2).
    K. A. Brueckner, Congrès Internationale de Physique Nucléaire, Paris 1964, Vol. I, p. 462.Google Scholar
  3. (3).
    A. Swift, and L. R. B. Elton, Phys. Rev. Lett. 17, 484 (1966).CrossRefGoogle Scholar
  4. (4).
    L. R. B. Elton, and A. Swift, Nucl. Phys. A94, 52 (1966).Google Scholar
  5. (5).
    F. G. Perey, and J. P. Schiffer, Phys. Rev. Lett. 17, 324 (1966).CrossRefGoogle Scholar
  6. (6).
    B. F. Gibson, and K. J. van Oostrum, Nucl. Phys. A90, 159 (1967).CrossRefGoogle Scholar
  7. (7).
    F. G. Perey, and B. Buck, Nucl. Phys. 32, 353 (1962).CrossRefGoogle Scholar
  8. (8).
    A. N. James et al, preprint.Google Scholar
  9. (9).
    A. de Shalit, private communication, 1965.Google Scholar
  10. (10).
    V. Gillet, and E. A. Sanderson, Nucl. Phys. A91, 292 (1967).CrossRefGoogle Scholar
  11. (11).
    W. J. Gerace, and A. M. Green, Nucl. Phys. A93, 110 (1967).CrossRefGoogle Scholar
  12. (12).
    J. B. Bellicard et al, Phys. Rev. Lett. 19, 527 (1967).CrossRefGoogle Scholar
  13. (13).
    L. R. B. Elton, International Conference on Electro-magnetic Sizes of Nuclei, Ottawa 1967.Google Scholar
  14. (14).
    F. G. Perey, Direct Reactions and Nuclear Reaction Mechanisms, Gordon and Breach, New York 1962, p. 125.Google Scholar
  15. (15).
    H. L. Anderson et al, preprint.Google Scholar
  16. (16).
    J. Bellicard, and K. J. van Oostrum, Phys. Rev. Lett. 19, 242 (1967).CrossRefGoogle Scholar
  17. (17).
    G. J. C. van Niftrik, and R. Engfer, Phys. Lett. 22, 940 (1966).Google Scholar
  18. (18).
    D. F. Jackson, and B. K. Jain, Phys. Lett. 27B, 147 (1968).CrossRefGoogle Scholar
  19. (19).
    I. S. Towner, Nucl. Phys. Al26, 97 (1969).Google Scholar
  20. (20).
    C. J. Batty, E. Friedman, and G. W. Greenlees, Nucl. Phys. Al29, 368 (1969).Google Scholar
  21. (21).
    G. W. Greenlees, G. J. Pyle, and Y. C. Tang, Phys. Rev. 171, 1115 (1968).CrossRefGoogle Scholar
  22. (22).
    V. K. Kembhavi, and D. F. Jackson, contribution to this conference.Google Scholar
  23. (23).
    D. F. Jackson, Nuovo Cim., to be published, and contribution to this conference.Google Scholar
  24. (24).
    C. G. Morgan, and D. F. Jackson, preprint.Google Scholar
  25. (25).
    D. F. Jackson, and S. Murugesu, private communi-cation.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • L. R. B. Elton
    • 1
  • S. J. Webb
    • 1
  • R. C. Barrett
    • 1
  1. 1.Department of PhysicsUniversity of SurreyGuildfordUK

Personalised recommendations