Advertisement

Abstract

Beginning in the middle 1830’s the roll-call of chemists interested in answering the important theoretical and practical question of whether green plants can use atmospheric N2, includes such famous names as Boussingault and Ville in France, Lawes and Gilbert in England, Liebig in Germany and Atwater in the United States (Wilson, 1957). When Hellriegel and Wilfarth in 1886–1887 reported their classical researches, interest of the chemist languished except for a few who undertook the rather thankless chore of confirming and extending the observations. The discoveries of Berthelot, Winogradsky and Beijerinck of biological nitrogen fixation by free-living soil bacteria and by Hiltner and others that even nonlegumes such as the alder in association with an appropriate endophyte can also use N2 provided a backlog of basic science that could be exploited in agricultural practice. Such application was carried out appropriately in agricultural colleges and experimental stations; the research, dealing with laboratory, greenhouse and field experiments designed for solving very practical problems, was published as station bulletins and reports in agricultural journals.

Keywords

Nitrogen Fixation Aspartic Acid Root Nodule Bacterium Symbiotic System Azotobacter Chroococcum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. BERGERSEN and E. H. HIPSLEY,. Gen. Microbiol., 60, 61 (1970).Google Scholar
  2. D. R. BIGGINS and J. R. POSTGATE, J. Gen. Microbiol., 56, 181 (1969).PubMedGoogle Scholar
  3. H. BORTELS, Arch. Mikrobiol., 1, 333 (1930).CrossRefGoogle Scholar
  4. J. M. BREMNER, Methods of Soil Analysis. Agronomy Monograph 9 (C. A. BLACK, ed.) American Society of Agronomy, Madison, Wisconsin (1965).Google Scholar
  5. D. BURK, J. Phys. Chem., 34, 1195 (1930).CrossRefGoogle Scholar
  6. D. BURK, Ergeb. Enzymforsch., 3, 23 (1934).Google Scholar
  7. D. BURK, Biochimica, 2, 312 (1937).Google Scholar
  8. D. BURK and R. H. BURRIS, Ann. Rev. Biochem., 10, 587 (1941).CrossRefGoogle Scholar
  9. D. BURK and C. K. HORNER, SoilSci., 41, 81 (1936).Google Scholar
  10. R. H. BURRIS, Science, 94, 238 (1941).PubMedCrossRefGoogle Scholar
  11. R. H. BURRIS, J. Biol. Chem., 143, 509 (1942).Google Scholar
  12. R. H. BURRIS, A Symposium on Inorganic Nitrogen Metabolism. (W. D. McElroy and B. Glass, eds.), p. 316. The Johns Hopkins Press, Baltimore (1956).Google Scholar
  13. R. H. BURRIS, Ann. Rev. Plant Physiol., 17, 155 (1966).CrossRefGoogle Scholar
  14. R. H. BURRIS and P. W. WILSON, Ann. Rev. Biochem., 14, 685 (1945).CrossRefGoogle Scholar
  15. R. H. BURRIS and P. W. WILSON, Bot. Gaz., 108, 254 (1946).CrossRefGoogle Scholar
  16. C. E. COATES and W. R. DODSON, J. Amer. Chem. Soc, 18, 25 (1896).CrossRefGoogle Scholar
  17. E. B. FRED and P. W. WILSON, Proc. Natl. Acad. Sci. U.S., 20, 403 (1934).CrossRefGoogle Scholar
  18. L. H. FRIEDBURG, J. Amer. Chem. Soc, 12, 145 (1890).CrossRefGoogle Scholar
  19. J. B. S. HALDANE, Nature, 179, 832 (1957).CrossRefGoogle Scholar
  20. S. HILL and J. R. POSTGATE, J. Gen. Microbiol, 58, 277 (1969).PubMedGoogle Scholar
  21. G. E. HOCH, K. C. SCHNEIDER and R. H. BURRIS, Biochem. Biophys. Acta, 37,273 (1960).PubMedCrossRefGoogle Scholar
  22. C. G. HOPKINS, J. Amer. Chem. Soc, 24, 1155 (1902).CrossRefGoogle Scholar
  23. A. JAKOBSONS, E. A. ZELL and P. W. WILSON, Arch. Mikrobiol, 41, 1 (1962).PubMedCrossRefGoogle Scholar
  24. M. D. KAMEN and H. GEST, Science, 109, 560 (1949).PubMedCrossRefGoogle Scholar
  25. A. KOSSOWICZ, Biochem. Z., 64, 82 (1914).Google Scholar
  26. H. KUBO, Acta Phytochim., 11, 195 (1939).Google Scholar
  27. S. B. LEE, J. B. WILSON and P. W. WILSON, J. Biol. Chem. 144, 273 (1942).Google Scholar
  28. C. J. LIND and P. W. WILSON, J. Amer. Chem. Soc, 63, 3511 (1941).CrossRefGoogle Scholar
  29. H. LINEWEAVER and D. BURK, J. Amer. Chem. Soc, 56, 658 (1934).CrossRefGoogle Scholar
  30. H. LINEWEAVER, D. BURK and W. E. DEMING, J. Amer. Chem. Soc, 56, 225 (1934).CrossRefGoogle Scholar
  31. C. B. LIPMAN, J. Biol. Chem., 10, 169 (1911).Google Scholar
  32. C. B. LIPMAN and J. K. TAYLOR, J. Franklin Inst., 198, 475 (1924).CrossRefGoogle Scholar
  33. M. C. MAHL, P. W. WILSON, M. A. FIFE and W. H. EWING, J. Bact., 89, 1482 (1965).PubMedGoogle Scholar
  34. O. MEYERHOF and D. BURK, Z. phys. Chem., 139A, 117 (1928).Google Scholar
  35. J. W. MILLBANK, Arch. Mikrobiol., 68, 32 (1969).PubMedCrossRefGoogle Scholar
  36. F. A. MOCKERIDGE, Biochem. J. 9, 272 (1915).PubMedGoogle Scholar
  37. D. MOLNAR, R. H. BURRIS and P. W. WILSON, J. Amer. Chem. Soc, 70, 1713 (1948).CrossRefGoogle Scholar
  38. C. A. PARKER and P. B. SCUTT, Biochim. Biophys. Acta, 38, 230 (1960).PubMedCrossRefGoogle Scholar
  39. M. H. PROCTOR and P. W. WILSON, Arch. Mikrobiol., 32, 254 (1959).PubMedCrossRefGoogle Scholar
  40. R. REPASKE and P. W. WILSON, J. Am. Chem. Soc, 74, 3101 (1952).CrossRefGoogle Scholar
  41. S. RUBEN, W. Z. HASSID and M. D. KAMEN, Science, 91, 578 (1940).PubMedCrossRefGoogle Scholar
  42. J. STOKLASA, Biochem Z., 130, 604 (1922)Google Scholar
  43. J. STOKLASA, Biochem Z., 176, 38 (1926).Google Scholar
  44. J. STOKLASA and J. PĚNKAVA, Biochem. Z., 194, 15 (1928).Google Scholar
  45. L. TÖTH, Experientia, 4, 395 (1948)PubMedCrossRefGoogle Scholar
  46. L. TÖTH, Experientia, 5, 474 (1949).PubMedCrossRefGoogle Scholar
  47. W. E. TOTTINGHAM, J. Biol. Chem., 24, 221 (1916).Google Scholar
  48. A. I. VIRTANEN, Biochem. Z., 193, 300 (1928).Google Scholar
  49. A. I. VIRTANEN, Cattle Fodder and Human Nutrition, p. 26. Cambridge University Press, London (1938).Google Scholar
  50. A. I. VIRTANEN, Third Comm. Intern. Soc Soil Sci, Trans., A, 4 (1939).Google Scholar
  51. A. I. VIRTANEN, Ann. Rev. Microbiol., 2, 485 (1948).CrossRefGoogle Scholar
  52. A. I. VIRTANEN, Biol. Rev., 22, 239 (1947).PubMedCrossRefGoogle Scholar
  53. A. I. VIRTANEN, Ann. Acad. Sci. Fenn. Ser. A II Chemica, 43, 3 (1952).Google Scholar
  54. E. B. VORHEES and J. G. LIPMAN, J. Am. Chem. Soc, 27, 556 (1905).CrossRefGoogle Scholar
  55. H. A. WEBER, J. Amer. Chem. Soc, 20, 9 (1898).CrossRefGoogle Scholar
  56. H. H. WILEY, J. Amer. Chem. Soc, 16, 1 (1894).CrossRefGoogle Scholar
  57. P. W. WILSON, J. Amer. Chem. Soc, 58, 1256 (1936).CrossRefGoogle Scholar
  58. P. W. WILSON, Ergeb. Enzymforsch., 8, 13 (1939).Google Scholar
  59. P. W. WILSON, Perspective and Horizons in Microbiology. (S. A. Waksman, ed.), p. 110. Rutgers University Press, New Brunswick, New Jersey (1955).Google Scholar
  60. P. W. WILSON, Bacteriol. Rev., 21, 215 (1957).PubMedGoogle Scholar
  61. P. W. WILSON, Encyclopedia of Plant Physiology. (W. Ruhland, ed.), Vol. VIII, p. 9. Springer-Verlag, Berlin, Göttingen and Heidelberg (1958).Google Scholar
  62. P. W. WILSON, Bacteriol, Rev., 27, 405 (1963).Google Scholar
  63. P. W. WILSON, R. H. BURRIS and W. B. COFFEE, J. Biol, Chem., 147, 475 (1943).Google Scholar
  64. P. W. WILSON and R. H. BURRIS, Bacteriol. Rev., 11, 41 (1947).Google Scholar
  65. P. W. WILSON and R. H. BURRIS, Ann. Rev. Microbiol., 7, 415 (1953).CrossRefGoogle Scholar
  66. P. W. WILSON and E. B. FRED, Proc. Natl. Acad. Sci, U.S., 23, 503 (1937).CrossRefGoogle Scholar
  67. P. W. WILSON, E. W. HOPKINS and E. B. FRED, Arch. Mikrobiol., 3, 322 (1932).CrossRefGoogle Scholar
  68. P. W. WILSON and O. WYSS, Third Comm. Intern. Soc, Soil Sci., Trans., B, 13 (1939).Google Scholar
  69. O. WYSS, C. J. LIND, J. B. WILSON and P. W. WILSON, Biochem.J., 35, 845 (1941).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Company Ltd. 1971

Authors and Affiliations

  • Perry W. Wilson
    • 1
  1. 1.Department of BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations