Genetic Aspects of Antibody Synthesis

  • Roal’d S. Nezlin

Abstract

One of the most important achievements of modern biology has been the establishment of the basic stages of protein biosynthesis in cells [17]. It is now generally accepted that the structure of all proteins formed during the development of the organism is determined by the sequence of nucleotides in structural genes of DNA [8]. The activity of these genes can be renewed or curtailed according to necessity at different times during the life of a cell. This regulation is apparently effected by means of special repressors — substances of unknown nature which are able to inhibit synthesis of messenger RNA on DNA [15, 82].

Keywords

Cellulose Albumin Lymphoma Recombination Tuberculosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. K. Akatov, “The use of inbred strains of mice as an experimental model for the study of immunity against staphylococci,” J. Hyg. Epid. Microbiol. Immunol. 9:180 (1965).Google Scholar
  2. 2.
    S.J. Ginzburg-Kalinina, “Hereditary influences on the development of immuno-biological factors in the organism,” Vestn. Akad. Med. Nauk 3:49 (1965).Google Scholar
  3. 3.
    A. E. Gurvich and R. S. Nezlin, “DNA and biosynthesis of antibodies and y -globulins,” Usp. Biol. Khim. 7:150 (1965).Google Scholar
  4. 4.
    Zh. Dosse, in: Immunohematology [in Russian], Medgiz, Moscow (1959), p. 106.Google Scholar
  5. 5.
    G.I. Drizlikh, “Correlation of biosynthesis of nonspecific γ -globulins and antibodies and the effect of antigen on these processes,” Biokhimiya 30(4):743 (1965).Google Scholar
  6. 6.
    V.I. Ioffe, “On certain genetic conceptions in immunology,” in: Problems of Medical Genetics [in Russian] (1965), p. 29.Google Scholar
  7. 7.
    P. N. Kosyakov, Immunology of Isoantigens and Isoantibodies [in Russian], Meditsina, Moscow (1965).Google Scholar
  8. 8.
    Zh. Medvedev, Biosynthesis of Proteins and Problems of Ontogenesis [in Russian], Medgiz, Moscow (1963).Google Scholar
  9. 9.
    R. V. Petrov, V. M. Man’ko, and I. K. Egorov, “On the different antibody-synthesizing capacities of highly inbred mice strains,” Dokl. Akad. Nauk SSSR 153(3):728 (1963).Google Scholar
  10. 10.
    R. V. Petrov, E. I. Panteleev, V. M. Man’ko, and V. S. Egorova, “Interstrain differences in antibody response in inbred mouse strains and their genetic conditioning,” Genetika 2(7):78 (1966).Google Scholar
  11. 11.
    A.A. Prokofeva-Belgovskaya, “Replication of DNA in chromosomes,” in: Molecular Biology. Problems and Perspectives. (On the 70th Birthday of Academician V. A. Engel’gardt) [in Russian], Nauka, Moscow (1964), p. 97.Google Scholar
  12. 12.
    O. V. Rokhlin, “Role of heredity in antibody synthesis in inbred mouse strains,” Byul. Mosk. Obshchestva Ispytatelei Prirody 71(2):131 (1966).Google Scholar
  13. 13.
    O. V. Rokhlin, V. A. Lyashenko, R. J. Vysokodvorova, and R. P. Khromatcheva, “Differences in hemolysin production of inbred strains CBA and CC57BR,” Genetika 2(7):71 (1966).Google Scholar
  14. 13a.
    O. V. Rokhlin and R. P. Khromatcheva, “Inheritance of interstrain differences in producing hemolysins against rat erythrocytes,” Genetika 2(12):59 (1966).Google Scholar
  15. 14.
    M. T. Tsoneva-Maneva and R. S. Nezlin, “Study of the capacity of phytohemagglutinin from Sax variety bean seeds to stimulate mitosis of leukocytes of the peripheral blood in vitro,” Tsitologiya 5(4):458 (1963).Google Scholar
  16. 15.
    V. S. Shapot, “Mechanisms of regulation of protein synthesis in the cell,” in: Biosynthesis of Protein and Nucleic Acids [in Russian], Nauka, Moscow (1965), p. 171.Google Scholar
  17. 15a.
    Ja. S. Schwartzman, M. K. Karpov, and A. S. Zuev, “Immune reactions of isolated cells,” J. Microbiol. Epidemol. Immunol. Moscow 10:43 (1964).Google Scholar
  18. 15b.
    Ja. S. Schwartzman, “Effect of the number of antigens on the quantity of cells producing several kinds of antibody,” Nature 213(5079):925 (1967).PubMedGoogle Scholar
  19. 16.
    Zh. G. Shmerling, “Heterogeneity of DNA and its biological significance,” Usp. Sovrem. Biol. 59(1):33 (1965).PubMedGoogle Scholar
  20. 17.
    V. A. Engel’gardt, Certain Problems of Contemporary Biochemistry, Izdat. Akad. Nauk SSSR, Moscow (1959).Google Scholar
  21. 18.
    V. P. Efroimson, “Certain biochemical mechanisms of inherited and acquired immunity,” Zh. Vses. Khim. Obshchestva im. D. I. Mendeleeva (3):314 (1961).Google Scholar
  22. 19.
    V. P. Efroimson, Introduction to Medical Genetics [in Russian], Medgiz, Moscow (1964).Google Scholar
  23. 20.
    J. C. Allen and H. G. Kunkel, “Antibodies to genetic types of gamma-globulins after multiple transfusion,” Science 139(3553):418 (1963).PubMedGoogle Scholar
  24. 21.
    J. C. Allen, H. G. Kunkel, and E. A. Kabat, “Studies on human antibodies. II. Distribution of genetic factors,” J. Exp. Med. 119(3):453 (1964).Google Scholar
  25. 22.
    E. R. Arquilla and J. Finn, “Genetic control of combining sites of insulin antibodies produced by guinea pigs,” J. Exp. Med. 122(4):771 (1965).PubMedGoogle Scholar
  26. 22a.
    G. Attardi, M. Cohn, K. Horibata, and E. S. Lennox, “Antibody formation by rabbit lymph node cells. I-IV,” J. Immunol. 92(3):335–390 (1964).PubMedGoogle Scholar
  27. 23.
    R. Audran and M. Steinbuch, “Study of a precipitating complex during the Gm/anti-Gm reaction,” Compt. Rend. 259(23):4405 (1965).Google Scholar
  28. 24.
    F. Bach and K. Hirschhorn, “Gamma-globulin production by human lymphocytes in vitro,” Exp. Cell Res. 32(3):592 (1964).Google Scholar
  29. 25.
    B. Bain and L. Lowenstein, “Genetic studies on the mixed leukocyte reaction,” Science 145(3638):1315 (1964).PubMedGoogle Scholar
  30. 26.
    B. M. Balfour, E. H. Cooper, and E. L. Alpen, “Morphological and kinetic studies of antibody-producing cells in rat lymph nodes,” Immunology 8(3): 230 (1965).PubMedGoogle Scholar
  31. 27.
    B. M. Balfour, E. H. Cooper, and E. S. Meek, “Deoxyribonucleic acid content of antibody-containing cells in the rat lymph node,” Nature 206(4985):686 (1965).PubMedGoogle Scholar
  32. 27a.
    S. Ben-Efraim, R. Arnon, and M. Sela, “The immune response of inbred strains of guinea pigs to polylysyl rabbit serum albumin,” Immunochemistry 3:491Google Scholar
  33. 27b.
    S. Ben-Efraim, S. Fuchs, and M. Sela, “Differences in immune response to synthetic antigens in two inbred strains of guinea pigs,” Immunology 12(5):573 (1967).PubMedGoogle Scholar
  34. 28.
    R. N. Baney, J. J. Vazquez, and F.J. Dixon, “Cellular proliferation in relation to antibody synthesis,” Proc. Soc. Exp. Biol. Med. 109(1): 1 (1962).PubMedGoogle Scholar
  35. 28a.
    N. Barth, C. McLaughlin, and J. L. Fahey, “The immunoglobulins of mice. VI. Response to immunization,” J. Immunol. 95(5):781 (1965).PubMedGoogle Scholar
  36. 29.
    B. Benacerraf, “Studies on the nature of antigenicity with artificial antigens,” in: Molecular and Cellular Basis of Antibody Formation, Academic Press, New York (1965), p. 57.Google Scholar
  37. 30.
    B. Benacerraf and P. G. H. Gell, “Delayed hypersensitivity to homologous γ -globulin in the guinea pig,” Nature 189(4764):586 (1961).Google Scholar
  38. 31.
    P. Bernstein and J. Oudin, “A study of rabbit γ-globulin allotypy by means of heteroimmunizations,” J. Exp. Med. 120(4):655 (1964).Google Scholar
  39. 32.
    S.V. Boyden, “Natural antibodies and the immune response,” Advan. Immunol. 5:1 (1966).Google Scholar
  40. 32a.
    P. Burtin and D. Buffe, “Synthesis of human immunoglobulins in germinal centers of lymphoid organs,” J. Immunol. 98(3):536 (1967).PubMedGoogle Scholar
  41. 33.
    E. E. Capalbo, T. Makinodan, and W. D. Gude, “Fate of 3H-thymidine-labeled spleen cells in in vivo cultures during secondary antibody response,” J. Immunol. 89(1):1 (1962).PubMedGoogle Scholar
  42. 33a.
    J. J. Cebra and G. M. Bernier, “Quantitative relationship among lymphoid cells differentiated with respect to class of heavy chain; type of light chain, and allotypic markers,” in symposium: Ontology of Immune Response (1966).Google Scholar
  43. 33b.
    J. J. Cebra, J. H. Colberg, and S. Dray, “Rabbit lymphoid cells differentiated with respect to α, γ, and μ-heavy polypeptide chains and to allotypic markers Aal and Aa2,” J. Exp. Med. 123(3):547 (1966).PubMedGoogle Scholar
  44. 33c.
    F. Celada and G. Klein, “Autonomy of H-2 genes in individual immunocytes,” Nature 215(5106):1136 (1967).PubMedGoogle Scholar
  45. 33d.
    F. Celada and H. Wigzell, “Immune response in spleen colonies. II. Clonal assortment of 19 S and 7 S producing cells in mice reacting against two antigens,” Immunology 11(5):453 (1966).PubMedGoogle Scholar
  46. 34.
    N. D. Chapman and R. W. Dutton, “The stimulation of DNA synthesis in cultures of rabbit lymph node and spleen cell suspension by homologous cells,” J. Exp. Med. 121(1):85 (1965).PubMedGoogle Scholar
  47. 35.
    N. D. Chapman, R. M. E. Parkhouse, and R. W. Dutton, “Antigen stimulated proliferation in lymphoid and myeloid tissues from immunized rabbits,” Proc. Soc. Exp. Biol. Med. 117(3):708 (1964).PubMedGoogle Scholar
  48. 36.
    P. Charache, F. S. Rosen, C. A. Janeway, J. N. Craig, and H. A. Rosenberg, “Acquired agammaglobulinemia in siblings,” Lancet 1(7379):234 (1963).Google Scholar
  49. 37.
    E. P. Cohen and D. W. Talmage, “Onset and duration of DNA synthesis in antibody-forming cells after antigen,” J. Exp. Med. 121(1):125 (1965).PubMedGoogle Scholar
  50. 37a.
    M. Cohn, “Antibody synthesis: The take home lesson,” in: Gamma-globulins. Structure and Control of Biosynthesis, Almquist and Wiksell, Stockholm (1967), p. 615.Google Scholar
  51. 38.
    J. E. Colberg and S. Dray, “Localization of immunofluorescence of gammaglobulin allotypes in lymph node cells of homozygous and heterozygous rabbits” Immunology 7(3):273 (1964).PubMedGoogle Scholar
  52. 39.
    D. E. Comings, “A third gamma-globulin chain,” Lancet II(7311):786 (1963).Google Scholar
  53. 40.
    H. L. Cooper and A. D. Rubin, “RNA metabolism in lymphocytes stimulated by phytohemagglutinin: Initial responses to phytohemagglutinin,” Blood 25(6):1014 (1965).PubMedGoogle Scholar
  54. 40a.
    C. C. Curtain and A. Baumgarten, “Immunocytochemical localization of the immunoglobulin factors Gm(a), Gm(b), Inv(a) in human lymphoid tissue,” Immunology 10(6):499 (1966).PubMedGoogle Scholar
  55. 41.
    J. K. Dineen, “Sources of immunological variation,” Nature 202(4927): 101 (1964).PubMedGoogle Scholar
  56. 42.
    S. Dray, “General discussion,” in: Molecular and Cellular Basis of Antibody Formation, Academic Press, New York (1965), p. 650.Google Scholar
  57. 43.
    S. Dray, S. Dubiski, A. Kelus, E. S. Lennox, and J.Oudin, “A notation for allotypy,” Nature 195(4843):785 (1962).Google Scholar
  58. 44.
    S. Dray and A. Nisonoff, “Contribution of allelic genes Ab4 and Ab5 to formation of rabbit 7 S γ-globulins,” Proc. Soc. Exp. Biol. Med. 113(1): 20 (1963).Google Scholar
  59. 45.
    S. Dray and A. Nisonoff, “Relationship of genetic control of allotypic specificities to the structure and biosynthesis of rabbit γ -globulin,” in: Molecular and Cellular Basis of Antibody Formation, Academic Press, New York (1965), p. 175.Google Scholar
  60. 46.
    S. Dray, G. O. Young, and A. Nisonoff, “Distribution of allotypic specificities among rabbit γ -globulin molecules genetically defined at two loci,” Nature 199(4888):52 (1963).PubMedGoogle Scholar
  61. 46a.
    S. Dubiski, “Suppression of synthesis of allotypically defined immunoglobulins and compensation by another subclass of immunoglubulin,” Nature 214(5095):1365 (1967).PubMedGoogle Scholar
  62. 47.
    S. Dubiski and B. Cinader, “A new allotypic specificity in the mouse (MuA2),” Nature 197(4868): 705(1963).).PubMedGoogle Scholar
  63. 47a.
    S. Dubiski and P. Muller, “A new allotypic specificity (A9) of rabbit immunoglobulin,” Nature 214(5089):696 (1967).PubMedGoogle Scholar
  64. 48.
    R. W. Dutton, “The effect of antigen on the proliferation of spleen cell suspensions from tolerant rabbits,” J. Immunol. 93(5):814 (1964).PubMedGoogle Scholar
  65. 49.
    R. W. Dutton and H. N. Bulman, “The significance of the protein carrier in the stimulation of DNA synthesis by hapten — protein conjugates in the secondary response,” Immunology 7(1):54 (1964).PubMedGoogle Scholar
  66. 50.
    R. W. Dutton and J. D. Eady, “An in vitro system for the study of the mechanism of antigenic stimulation in the secondary response,” Iminunology 7(1):40 (1964).Google Scholar
  67. 51.
    R. W. Dutton and G. M. Page, “The response of spleen cells from immunized rabbits to cross-reacting antigens in an in vitro system,” Immunology 7(6):665 (1964).PubMedGoogle Scholar
  68. 52.
    R. W. Dutton and R. M. E. Parkhouse, “Studies on the mechanism of antigenic stimulation in the secondary response,” in: Molecular and Cellular Basis of Antibody Formation, Academic Press, New York (1965), p. 567.Google Scholar
  69. 53.
    R. W. Dutton and J. D. Pearce, “Antigen-dependent stimulation of synthesis of deoxyribonucleic acid in spleen cells from immunized rabbits,” Nature 194(4823): 93 (1965).Google Scholar
  70. 54.
    M. W. Elves and M. C. G. Israels, “Lymphocyte transformation in cultures of mixed leukocytes,” Lancet I(7397): 1184 (1965).Google Scholar
  71. 55.
    M. W. Elves, S. Roath, G. Taylor, and M. C. Israels, “The in vitro production of antibody lymphocytes,” Lancet I(7294):1292 (1963).Google Scholar
  72. 56.
    A. Feinstein, P. G. H. Gell, and A. S. Kelus, “Immunochemical analysis of rabbit γ-globulin allotypes,” Nature 200(4907):653 (1963).PubMedGoogle Scholar
  73. 56a.
    M. Feldman and T. Mekori, “Antibody production by ‘cloned’ cell populations,” Immunology 10(2):149 (1966).PubMedGoogle Scholar
  74. 56b.
    J. Finegold, J. L. Fahey, and H. Granger, “Synthesis of immunoglobulins by human cell lines in tissue culture,” J. Immunol. 99(5):839 (1967).PubMedGoogle Scholar
  75. 57.
    M. A. Fink and V. A. Quinn, “Antibody production in inbred strains of mice,” J. Immunol. 70(1):61 (1953).PubMedGoogle Scholar
  76. 58.
    P. H. Fitzgerald, “The immunological role and long life-span of small lymphocytes,” J. Theoret. Biol. 6(1):13 (1964).Google Scholar
  77. 58a.
    D. C. Formey, K. Kamin, and H.H. Fudenberg, “Quantitative studies of phytohemagglutinin-induced DNA and RNA synthesis in normal and agammaglobulinemic leukocytes,” J. Exp. Med. 125(5):863 (1967).Google Scholar
  78. 59.
    E. C. Franklin, B. Frangione, and H. Fudenberg, “Differences between Gm(b) and Gm(f) in peptide maps of normal and myeloma γ-globulins,” Vox Sanguinis 10(3):368 (1965).PubMedGoogle Scholar
  79. 60.
    E. C. Franklin, H. Fudenberg, M. Meltzer, and D. Stanworth, “The structural basis for genetic variations of normal human γ-globulins,” Proc. Nat. Acad. Sci. USA 48(6):914 (1962).PubMedGoogle Scholar
  80. 61.
    H. Fudenberg and E. C. Franklin, “Human γ-globulin. Genetic control and its relations to disease,” Ann. Internal. Med. 58(1): 171 (1963).Google Scholar
  81. 62.
    H.H. Fudenberg and B. R. Fudenberg, “Antibody to hereditary human y -globulin (Gm) factor resulting from maternal—fetal incompatibility,” Science 195(3628):170 (1964).Google Scholar
  82. 63.
    H. H. Fudenberg, J. F. Heremans, and E. C. Franklin, “A hypothesis for the genetic control of synthesis of γ-globulins,” Ann. Inst. Pasteur 104(2):155 (1963).Google Scholar
  83. 64.
    H.H. Fudenberg and K. Hirschhorn, “Agammaglobulinemia. The fundamental defect,” Science 145(3632):611 (1964).PubMedGoogle Scholar
  84. 65.
    B. Frangione, “Antigenicity of hereditary human γ-globulin (Gm) factors -biological and biochemical aspects,” Cold Spring Harbor Symp. Quant. Biol. 29:463(1967).Google Scholar
  85. 66.
    P. G. H. Gell and A. Kelus, “Deletions of allotypic γ-globulins in antibodies,” Nature 195(4836):44 (1962).Google Scholar
  86. 66a.
    P. G. H. Gell and S. Sell, “Studies on rabbit lymphocytes in vitro. II and III,” J. Exp. Med. 122(4):813, 823 (1965).PubMedGoogle Scholar
  87. 66b.
    Genetics of the Immune Response. Report of a World Health Organization Science Group, Geneva (1967).Google Scholar
  88. 67.
    A. M. Gilman, A. Nisonoff, and S. Dray, “Symmetrical distribution of genetic markers in individual rabbit γ -globulin molecules,” Immunochemistry 1(2):109(1964).PubMedGoogle Scholar
  89. 68.
    E. R. Gold, L. Martenson, G. Ropartz, L. Rivat, and P. Y. Rousseau, “Gm(f) -a determinant of human γ-globulin,” Vox Sanguinis 10(3):299 (1965).PubMedGoogle Scholar
  90. 69.
    R. A. Good and A. E. Gabrielsen, “Agammaglobulinemia and Hypogammaglob-ulinemia-relationship to the Mesenchymal diseases. The Streptococcus, Rheumatic Fever, and Glomerulonephritis,” Williams, Wilkins, and Co., Baltimore (1964), p. 368.Google Scholar
  91. 70.
    J. L. Gowans, D. D. McGregor, D. M. Cowen, and C. E. Ford, “Initiation of immune responses by small lymphocytes,” Nature 196(4855):651 (1962).PubMedGoogle Scholar
  92. 71.
    U. Grodecka, “Rabbit γ-globulin allotypes,” Nature 2204(4958):595 (1964).Google Scholar
  93. 71a.
    J. Green, P. Vassalli, and B. Benacerraf, “Cellular localization of anti-DNP-PLL and anticonveyor albumin antibodies in genetic nonresponder guinea pigs immunized with DNP—PLL albumin complex,” J. Exp. Med. 125(3):527 (1967).PubMedGoogle Scholar
  94. 72.
    R. Grubb, “Agglutination of erythrocytes coated with ‘incomplete’ anti-Rh by certain rheumatoid arithritic sera and some other sera. The existence of human serum groups,” Acata Pathol. Microbiol. Scand. 39(3): 195 (1956).Google Scholar
  95. 72a.
    R. Hamers and C. Hamers-Casterman, “Molecular localization of A chain allotypic specificities in rabbit IgG (7 S γ-globulin),” J. Mol. Biol. 14(1):228 (1965).Google Scholar
  96. 72b.
    R. Hamers, C. Hamers-Casterman, and S. Lagnaux, “A new allotype in the rabbit linked with As1 which may characterize a new class of IgG,” Immunology 10(5):399 (1966).Google Scholar
  97. 73.
    M. Harboe, “A new hemagglutinating substance in the Gm system anti-Gmb,” Acta Pathol. Microbiol. Scand. 47(2):191 (1959).PubMedGoogle Scholar
  98. 74.
    M. Harboe and J. Lundvall, “A new type in the Gm system,” Acta Pathol. Microbiol. Scand. 45(4):357 (1959).PubMedGoogle Scholar
  99. 75.
    M. Harboe, C. K. Osterland, and H. G. Kunkel, “Localization of two genetic factors to different areas of γ-globulin molecules,” Science 136(3520):979 (1962).PubMedGoogle Scholar
  100. 76.
    M. Harboe, C. K. Osterland, M. Mannick, and H. G. Kunkel, “Genetic characteristics of human γ-globulin in myeloma proteins,” J. Exp. Med. 116(5): 719 (1962).PubMedGoogle Scholar
  101. 76a.
    G. Harris and R. J. Littleton, “The effects of antigens and of phytohemaggluti-nin on rabbit spleen cell suspensions,” J. Exp. Med. 124(4):621 (1966).PubMedGoogle Scholar
  102. 77.
    M. Hashem and F. S. Rosen, “Mitogenic fractions in human peripheral lymphocyte extracts,” Lancet I(7326):201 (1964).Google Scholar
  103. 78.
    L. A. Herzenberg, “A chromosome region for γ2A and β2A globulin H chain isoantigens in the mouse,” Cold Spring Harbor Symp. Quant. Biol. 29:455 (1964).PubMedGoogle Scholar
  104. 78a.
    L. A. Herzenberg, L. A. Herzenberg, R. C. Goodlin, and E. C. Rivera, “Immuno-globulin synthesis in mice. Suppression by antiallotype antibody,” J. Exp. Med. 126(4):701 (1967).PubMedGoogle Scholar
  105. 79.
    L. A. Herzenberg, N. L. Warner, and L. A. Herzenberg, “Immunoglobulin isoantigens (allotype) in the mouse. I. Genetics and cross reactions of the 7 S γ2A isoantigens controlled by alleles at the Ig-1-locus,” J. Exp. Med. 121(3):415 (1965).PubMedGoogle Scholar
  106. 79a.
    L. Herzenberg and N. Warner, “Genetic control of mouse immunoglobunis,” in: Regulation of Antibody Response (B. Cinader, ed.), Charles Thomas, Springfield, Illinois (1967).Google Scholar
  107. 80.
    K. Hirschhorn, R. L. Kolodny, M. Hashem, and F. Bach, “Mitogenic action of phytohemagglutinin,” Lancet II(7302):305 (1963).Google Scholar
  108. 81.
    C. A. Janeway, “Hypogammaglobulinemia and immunological response,” in: Allergology, Pergamon Press, New York (1962), p. 241.Google Scholar
  109. 82.
    F. Jacob and J. Monod, “Biochemical and genetic mechanisms of regulation in a bacterial cell,” in: Molecular Biology. Problems and Perspectives. (On the 70th Birthday of Academician V. A. Engel’gardt) [in Russian], Nauka, Moscow (1964), p. 14.Google Scholar
  110. 82a.
    A. S. Kelus, “Rabbit allotypic markers as a model for molecular immunology,” in: Gamma-Globulin. Structure and Control of Biosynthesis, Nobel Symposium 3, Almquist and Wiksell, Stockholm (1967), p. 329.Google Scholar
  111. 83.
    A. S. Kelus and P. G. H. Gell, “An allotypic determinant specific to rabbit macroglobulin,” Nature 206(4981):313 (1965).PubMedGoogle Scholar
  112. 84.
    G. Kronvall, “Gm(f) activity of human γ-globulin fragments,” Vox Sanguinis 10(3):311 (1965).Google Scholar
  113. 85.
    H. G. Kunkel, J. C. Allen, and H. M. Grey, “Genetic characteristic and the polypeptide chains of various types of γ-globulin,” Cold Spring Harbor Symp. Quant. Biol. 29:443 (1964).PubMedGoogle Scholar
  114. 86.
    H. H. Kunkel, J. C. Allen, H. M. Grey, L. Martensson, and R. Grubb, “A relationship between the H-chain groups of 7 S γ-globulin and the Gm system,” Nature 203(4943):413 (1964).PubMedGoogle Scholar
  115. 87.
    S.D. LaWler and S. Cohen, “Distribution of allotypic specificities of the peptide chains of human γ-globulin,” Immunology 8(2):206 (1965).PubMedGoogle Scholar
  116. 87a.
    E. S. Lennox, “The genetics of the immune response,” Proc. Roy. Soc. Ser. B. 166(1003):222(1966).Google Scholar
  117. 88.
    S. Leskowitz, “Immunochemical study of rabbit γ-globulin allotypes,” J. Immunol. 90(1): 98 (1963).PubMedGoogle Scholar
  118. 89.
    B. B. Levine and B. Benacerraf, “Studies of antigenicity. The relationship between in vivo enzymatic degradability of hapten-polylysine conjugates and their antigenicities in guinea pigs,” J. Exp. Med. 120(5): 955 (1964).PubMedGoogle Scholar
  119. 90.
    B. B. Levine and B. Benacerraf, “Genetic control in guinea pigs of immune response to conjugates of haptens and poly-L-lysine,” Science 147(3657):517 (1965).PubMedGoogle Scholar
  120. 91.
    B. B. Levine, A. Ojeda, and B. Benacerraf, “Studies on artificial antigens. III. The genetic control of the immune response to hapten -poly -L -lysine conjugates in guinea pigs,” J. Exp. Med. 118(6):953 (1963).PubMedGoogle Scholar
  121. 91a.
    E. A. Lichter, “Rabbit γ A and γ M immunoglobulins with allotypic specificities controlled by the a locus,” J. Immunol. 98(1):139 (1967).PubMedGoogle Scholar
  122. 92.
    R. Lieberman and S. Dray, “Five allelic genes at the Asa locus which control γ-globulin allotypic specificities in mice,” J. Immunol. 93(4):584 (1964).PubMedGoogle Scholar
  123. 93.
    R. Lieberman and M. Potter, “Close linkage in genes controlling γA- and γM-heavy chain structure in BALB/c mice,” J. Mol. Biol. 18(3):516 (1966).PubMedGoogle Scholar
  124. 93a.
    S.D. Litwin, “Phylogenese differences among the Gm factors of nonhuman primates,” Nature 216(5112):268 (1967).PubMedGoogle Scholar
  125. 93b.
    S.D. Litwin and H. G. Kunkel, “The genetic control of γ-globulin heavy chains. Studies of the major heavy chain subgroup utilizing multiple genetic markers,” J. Exp. Med. 125(5):847 (1967).PubMedGoogle Scholar
  126. 94.
    K. Lindahl-Kiessling and J. A. Book, “Effects of phytohemagglutinin on leukocytes,” Lancet II(7367):1012 (1964).Google Scholar
  127. 95.
    N. R. Ling and E. M. Husband, “Specific and nonspecific stimulation of periphenol lymphocytes,” Lancet I(7329):363 (1964).Google Scholar
  128. 95a.
    H. O. McDevitt and M. Sela, “Genetic control of the antibody response. I. Demonstration of determinant specific differences in response to synthetic polypeptide antigens in two strains of inbred mice,” J. Exp. Med. 122(3):517 (1965).PubMedGoogle Scholar
  129. 95b.
    H. O. McDevitt and M. Sela, “Genetic control of the antibody response. II. Further analysis of the specificity of determinant specific control, and genetic analysis of the response to (H, G)-A-L in CBA and C57 mice,” J. Exp. Med. 126(5):969(1967).PubMedGoogle Scholar
  130. 96.
    O. Mäkelä and G. J. V. Nossal, “Autoradiographic studies on the immune response. II. DNA synthesis amongst single antibody-producing cells,” J. Exp. Med. 115(1):231 (1962).PubMedGoogle Scholar
  131. 96a.
    O. Mäkelä and G. J. V. Nossal, “Study of antibody-producing capacity of single cells by bacterial adherence and immobilization,” J. Immunol. 87(4):457 (1961).PubMedGoogle Scholar
  132. 96b.
    O. Mäkelä, “Studies on the quality of neutralizing bacteriophage antibodies produced by single cells. I. Evidence indicating that different cells produce different kinds of antibody against the tail of T-6,” Immunology 7(1): 9 (1964).Google Scholar
  133. 96c.
    O. Mäkelä, “Evidence indicating that different cells of a lymph node produce different kinds of antibody against the polysaccharide antigen 0–9, 12 of Salmonella,” Immunology 7(1):17 (1964).Google Scholar
  134. 97.
    M. Mannick and H. Metzger, “Hybrid antibody molecules with allotypically different L-polypeptide chains,” Science 148(3668):383 (1965).Google Scholar
  135. 97a.
    R. Mage and S. Dray, “Persistent altered phenotypic expression of allelic γ G-immunoglobulin allotypes in heterozygoni rabbits expossed to isoantibodies in fetal and neonatal life,” J. Immun. 95(3):525 (1965).PubMedGoogle Scholar
  136. 97b.
    R. G. Mage and S. Dray, “Persistence of altered expression of allelic γG-immunoglobulin allotypes in an “allotype suppressed “ rabbit after immunization,” Nature 212(5063):699 (1966).Google Scholar
  137. 97c.
    R. Mage, G. O. Young, and S. Dray, “An effect upon the regulation of gene expression: allotype suppression at the “A” locus in heterozygous offspring of immunized rabbits,” J. Immun. 98(3):502 (1967).PubMedGoogle Scholar
  138. 98.
    L. Martensson, “On the relationship between the γ-globulin genes of the Gm system. A study of the Gm gene products in sera myeloma globulins, and specific antibodies with special reference to the gene Gm,” J. Exp. Med. 120(6):1169(1964).Google Scholar
  139. 98a.
    L. Martensson, “Genes and immunoglobulins,” Vox Sanguinis 11(5):521 (1966).PubMedGoogle Scholar
  140. 99.
    L. Martensson and H.H. Fudenberg, “Gm genes and γ G-globulin synthesis in the human fetus,” J. Immunol. 94(4):514 (1965).Google Scholar
  141. 100.
    M. Meltzer, E. C. Franklin, H. Fudenberg, and B. Frangione, “Single peptide differences between γ -globulins of different genetic (Gm) types,” Proc. Nat. Acad. Sci. USA 51(6):1007 (1964).PubMedGoogle Scholar
  142. 100a.
    J. D. Minna, G. M. Inverson, and L. A. Herzenberg, “Identification of a gene locus for γG1 -immunoglobulin H chains and its linkage to the H chain chromosome region in the mouse,” Proc. Nat. Acad. Sci. USA 58(1):188 (1967).PubMedGoogle Scholar
  143. 101.
    R. J. Mishell and J. L. Fahey, “Molecular and submolecular localization of two isoantigens of mouse immunoglobulins,” Science 143(3613): 1440 (1964).PubMedGoogle Scholar
  144. 102.
    J. Mitchell, W. McDonald, and G. J. V. Nossal, “Autoradiographic studies of the immune response. 3. Differential lymphopoiesis in various organs,” Australian J. Exp. Biol. Med. Sci., Suppl. 41(411) (1963).Google Scholar
  145. 103.
    J. Monod, “Antibodies and induced enzymes,” in: Cellular and Humoral Aspects of the Hypersensitive States, New York (1959), p. 628.Google Scholar
  146. 103a.
    W. A. Muir and A. G. Steinberg, “On the genetics of the human allotypes, Gm and Inv,” Seminars in Hematology 4(2): 156 (1967).PubMedGoogle Scholar
  147. 103b.
    J. B. Natvig, H. G. Kunkel, and T. Gedde-Dahl, “Genetic studies of the heavy chain subgroups of γ G-globulin. Recombination between the closely linked cistons,” in: γ -globulins. Structure and Control of Biosynthesis, Nobel Symposium 3, Almquist and Wiksell, Stockholm (1967), p. 313.Google Scholar
  148. 104.
    P. Nettesheim and T. Makinodan, “Differentiation of lymphocytes undergoing an immune response in diffusion chambers,” J. Immunol. 94(6):878 (1965).Google Scholar
  149. 105.
    J. Newsome, “Synthesis of ribonucleic acid by stimulated human lymphocytes,” Nature 206(4988): 1013 (1965).PubMedGoogle Scholar
  150. 106.
    U. Nilsson, “Gm characters of 7 S γ-myeloma proteins and corresponding individual normal γ-globulins,” Acta Pathol. Microbiol. Scand. 61(2): 181 (1964).Google Scholar
  151. 107.
    G. J. V. Nossal, “Cellular genetics of immune responses,” Advan. Immunol. 2:163(1962).Google Scholar
  152. 107a.
    G. J. V. Nossal and O. Mäkelä, “Elaboration of antibodies by single cells,” Ann. Rev. Microbiol. 16:53 (1962).Google Scholar
  153. 108.
    G. J. V. Nossal and O. Mäkelä, “Autoradiographic studies on the immune response. I. The kinetics of plasma cell proliferation,” J. Exp. Med. 115(1):209 (1962).PubMedGoogle Scholar
  154. 109.
    G. J. V. Nossal, O. Mäkelä, M. L. Engel, and A. Fefer, “Cellular proliferation in immunity,” Stanford Med. Bull. 20(1):32 (1962).PubMedGoogle Scholar
  155. 109a.
    “Notation for genetic factors of human immunoglobulins,” Bull. World Health Organ. 33:721 (1965).Google Scholar
  156. 110.
    P. C. Nowell, “Phytohemagglutinin: an initiation of mitosis in cultures of normal human leukocytes,” Cancer Res. 20(4):462 (1960).PubMedGoogle Scholar
  157. 111.
    J. Oudin, “Reactions of specific precipitation between serums of animals of the same species,” Compt. Rend. 242(2489):2606 (1956).Google Scholar
  158. 112.
    J. Oudin, “Allotypy of rabbit serum proteins. I. Immunochemical analysis leading to the individualization of seven main allotypes,” J. Exp. Med. 112(1):125(1960).PubMedGoogle Scholar
  159. 113.
    J. Oudin, “Allotypy of human γ -globulins,” Compt. Rend. 225(6):1164 (1962).Google Scholar
  160. 113a.
    J. Oudin, “The genetic control of immunoglobulin synthesis,” Proc. Roy. Soc. B, 166(1003):207 (1966).Google Scholar
  161. 114.
    G. Pearmain, R. R. Lycette, and P. H. Fitzgerald, “Tuberculin-induced mitosis in peripheral blood leukocytes,” Lancet I(7282):637 (1963).Google Scholar
  162. 114a.
    B. de Permis, G. Chiappino, A. S. Kelus, and P. G. H. Gell, “Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues,” J. Exp. Med. 122(5):853 (1965).Google Scholar
  163. 115.
    R. D. A. Peterson, M. D. Cooper, and R. A. Good, “The pathogenesis of immunologic deficiency diseases,” Am. J. Med. 38(4):673 (1965).Google Scholar
  164. 115a.
    P. Pinchuk and P. Maurer, “Antigenicity of polypeptides (poly-α-amino acids). XVI. Genetic control of immunogenicity of synthetic polypeptides in mice,” J. Exp. Med. 122(4):673 (1965).Google Scholar
  165. 116.
    S. H. Polmar and A. G. Steinberg, “The effect of the interaction of heavy and light chains of IgG on the Gm and Inv antigens,” Biochem. Genet. 1(2):117 (1967).PubMedGoogle Scholar
  166. 116a.
    B. Pogo, V. Allfrey, and A. Mirsky, “RNA synthesis and histone acetylation during the course of gene activation in lymphocytes,” Proc. Nat. Acad. Sci. USA 55(4):885 (1966).Google Scholar
  167. 117.
    B. A. Rasmussen, “Isoantigens of γ -globulin in pigs,” Science 148(3678):1742 (1965).Google Scholar
  168. 118.
    R. A. Reisfeld, S. Dray, and A. Nisonoff, “Differences in amino acid composition of rabbit γ G-immunoglobulin light polypeptide chains controlled by allelic genes,” Immunochemistry 2(2): 155 (1965).PubMedGoogle Scholar
  169. 119.
    R. F. Rieder and J. Oudin, “Studies on the relationship of allotypic specificities to antibody specificities in the rabbit,” J. Exp. Med. 118(4):627 (1963).PubMedGoogle Scholar
  170. 120.
    J. H. Robbins, “Tissue culture studies of the human lymphocyte,” Science 146(3652):1648 (1964).PubMedGoogle Scholar
  171. 121.
    C. Ropartz, “Hereditary systems of human γ-globulins,” Ann. Biol. Clin. 22:445 (1964).Google Scholar
  172. 122.
    C. Ropartz, J. Lenoir, and L. Rivat, “A new inheritable property of human sera: the InV factor,” Nature 189(4764):586 (1961).PubMedGoogle Scholar
  173. 123.
    T. Sado and T. Makinodan, “The cell cycle of blast cells involved in secondary antibody response,” J. Immunol. 93(4):696 (1964).PubMedGoogle Scholar
  174. 124.
    J. H. Sang and W. R. Sobey, “The genetic control of response to antigenic stimuli,” J. Immunol. 72(1):52 (1954).PubMedGoogle Scholar
  175. 125.
    B. S. Sayly, “Phytohemagglutinin and ‘sensitized’ leukocytes,” Lancet 11(7362):762 (1964).Google Scholar
  176. 126.
    J. S. Schooley, “Autoradiographic observation of plasma cell formation,” J. Immunol. 86(3):331 (1961).PubMedGoogle Scholar
  177. 127.
    R. Schrek and L. M. Elrod, “Lymphoblastoid transformation of rat and human lymphocytes by rabbit sera,” Lancet II(7359):595 (1964).Google Scholar
  178. 128.
    S. Sell, “Immunoglobulins of the germ-free guinea pig,” J. Immunol. 93(1):122(1964).Google Scholar
  179. 128a.
    S. Sell, D.S. Rowe, and P. G. H. Gell, “Studies on rabbit lymphocytes in vitro, III,” J. Exp. Med. 122(4):823 (1965).PubMedGoogle Scholar
  180. 128b.
    S. Sell, “Studies on rabbit lymphocytes in vitro. V. The induction of blast transformation with sheep antisera to rabbit IgG subunits,” J. Exp. Med. 125(2):289(1967).PubMedGoogle Scholar
  181. 128c.
    S. Sell, “Studies on rabbit lymphocytes in vitro. VI. The induction of blast transformation with sheep antisera to rabbit IgA and IgM,” J. Exp. Med. 125(3):393 (1967).PubMedGoogle Scholar
  182. 129.
    S. K. Seth, A. Nisonoff, and S. Dray, “Hybrid molecules of rabbit γ -globulins differing in genotypes at two loci,” Immunochemistry 2(1):39 (1965).Google Scholar
  183. 130.
    D. Skalba, “Allotypes of hen serum proteins,” Nature 204(4961):894 (1964).PubMedGoogle Scholar
  184. 131.
    P.A. Small, R. A. Reisfeld, and S. Dray, “Peptide differences of rabbit γG-immunoglobulin light chains controlled by allelic genes,” J. Mol. Biol. 11(4):713 (1965).PubMedGoogle Scholar
  185. 131a.
    W. R. Sobey, J. M. Magrath, and A. H. Reisner, “Genetically controlled specific immunological unresponsiveness,” Immunology 11(5):511 (1966).PubMedGoogle Scholar
  186. 132.
    G. F. Springer, F. E. Horton, and M. Forbes, “Origin of antihuman blood group Bagglutinnis in germ-free chickens,” Ann. N. Y. Acad. Sci. 78(1):272 (1959).PubMedGoogle Scholar
  187. 133.
    A. G. Steinberg, “Progress in the study of genetically determined human y-globulin types (the Gm and Inv groups),” Progr. Med. Genet. 2:1 (1962).Google Scholar
  188. 134.
    A. G. Steinberg, “Population, immunogenetic and biochemical studies on the Gm(b) factors of human γ-globulin,” Cold Spring Harbor Symp. Quant. Biol. 29:449 (1964).Google Scholar
  189. 135.
    A. G. Steinberg, “Comparison of Gm(f) with Gm(b2), Gm(bw) and a discussion of their genetics,” Am. J. Human Genet. 17(4):311 (1965).Google Scholar
  190. 135a.
    A. G. Steinberg, “Genetic variations in human immunoglobulins: The Gm and Inv types,” in: Advances in Immunogenetics (ed.: T.J. Greenwalt), Lippincott, Philadelphia (1967), p. 75.Google Scholar
  191. 136.
    A. G. Steinberg and R. A. Goldblum, “A genetic study of the antigens associated with the Gm(b) factor of human γ -globulin,” Am. J. Human Genet. 17(2):133(1965).Google Scholar
  192. 137.
    A. G. Steinberg and S. H. Polmar, “The relation of the S and F fragments and the H and L chains of γ-globulin to the Gm groups,” Vox Sanguinis 10(3):369(1965).PubMedGoogle Scholar
  193. 138.
    G. W. Stemke, “Allotypic specificities of A and B chains of rabbit γ-globulin,” Science 145(3630):403 (1964).PubMedGoogle Scholar
  194. 138a.
    G. W. Stemke and R. J. Fischer, “Rabbit 19 S antibodies with allotypic specificities of the a-locus group,” Science 150(3701):1298 (1965).PubMedGoogle Scholar
  195. 139.
    J. Sterzl, L. Mandel, I. Miller, and I. Riha, “Development of immune reactions in the absence or presence of an antigenic stimulus,” in: Molecular and Cellular Basis of Antibody Formation, Academy Press, New York (1965), p. 351.Google Scholar
  196. 140.
    T. W. Tao, “Phytohemagglutinin elicitation of specific anamnestic immune response in vitro,” Science 146(3641):247 (1964).PubMedGoogle Scholar
  197. 140a.
    N. Tanigaki, Ya. Yagi, G. Moore, and D. Pressman, “Immunoglobulin production in human leukemia cell lines,” J. Immunol. 97(5):634 (1966).PubMedGoogle Scholar
  198. 140b.
    N. O. Thorpe and H. F. Deutsch, “Studies on papain-produced subunits of human γG-globulins. II. Structures of peptides related to the genetic Gm activity of γG-globulin Fc fragments,” Immunochemistry 3(4):329 (1966).PubMedGoogle Scholar
  199. 141.
    C. W. Todd, “Allotypy in rabbit 19 S protein,” Biochem. Biophys. Res. Commun. 11(3):1705 (1963).Google Scholar
  200. 141a.
    C. W. Todd and F. P. Inmann, “Comparison of the allotypic combining sites on H-chains of rabbit IgG and IgM,” Immunochemistry 4(6): 407 (1967).Google Scholar
  201. 141b.
    J. Travnicek, “Allotypic specificities in pigs,” Folia Microbiol. 11:13,406 (1966).Google Scholar
  202. 141c.
    J. Trentin, N. Wolf, V. Cheng, W. Fahlberg, D. Weiss, and R. Bonnag, “Antibody production by mice repopulated with limited numbers of clones of lymphoid cell precursors,” J. Immunol. 98(6):1326 (1967).PubMedGoogle Scholar
  203. 142.
    P. Urso and N. Gengozian, “Immunofluorescent direction of proliferating human antibody-forming cells,” Nature 203(4952):1391 (1964).PubMedGoogle Scholar
  204. 143.
    A. Winer, J. Robbing, J. Bellanti, D. Eitzman, and R. T. Smith, “Synthesis of γ-globulin in the newborn rabbit,” Nature 198(4879):487 (1963).Google Scholar
  205. 144.
    M. Waller, R. D. Hughes, J. J. Townsend, E. C. Franklin, and H. Fudenberg, “New serum group Gm(p),” Science 142(3597):1321 (1963).PubMedGoogle Scholar
  206. 144a.
    N. L. Warner, L. A. Herzenberg, and G. Goldstein, “Immunoglobulin iso-antigens (allotypes) in the mouse. II. Allotypic analysis of three γG2-myeloma proteins from (NZB × BALB/c) F1 hybrids and of normal γG2-globulins,” J. Exp. Med. 123(4):707 (1966).PubMedGoogle Scholar
  207. 144b.
    N. L. Warner and L. A. Herzenberg, “Immunoglobulin isoantigens (allotypes) in the mouse. IV. Allotypic specificities common to two distinct immunoglobulin classes,” J. Immunol. 99(4):675 (1967).PubMedGoogle Scholar
  208. 145.
    B. S. Westman, J. B. Olson, and K. R. Pleasants, “Serum proteins of germ-free rats fed water-soluble diets,” Nature 206(4988):1056 (1965).Google Scholar
  209. 146.
    J. Wunderlich and L. A. Herzenberg, “Genetics of a γ-globulin isoantigen (allotype) in the mouse,” Proc. Nat. Acad. Sci. USA 49(5):592 (1963).PubMedGoogle Scholar
  210. 147.
    J. M. Yoffey, “The lymphocyte,” Ann. Rev. Med. 15:125 (1964).PubMedGoogle Scholar
  211. 148.
    A. Zlotnick, J. J. Vazquez, and F.J. Dixon, “Mitotic activity of immunologically competent lymphoid cells transferred into X-irradiated recipients,” Lab. Invest. 11(6):493 (1962).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Roal’d S. Nezlin
    • 1
  1. 1.Institute of Molecular BiologyAcademy of Sciences of the USSRMoscowRussia

Personalised recommendations