Advertisement

The Physics of Nucleic Acids

  • Mikhail V. Vol’kenshtein

Abstract

Prior to speaking of the structure and physical properties of nucleic acids, it would seem desirable to examine their biological role. In this book it has been remarked already several times that DNA is the fundamental genetic substance and nucleic acids are responsible for the synthesis of proteins. It would seem that the time has come to bring out the evidence for these statements.

Keywords

Partition Function Double Helix Nitrogen Base Triple Helix Phage Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Davidson, “The Biochemistry of the Nucleic Acids,” 4th ed., John Wiley and Sons, Inc., New York, 1960.Google Scholar
  2. 2.
    E. Schrödinger, “What is Life?” Cambridge University Press, New York, 1963.Google Scholar
  3. 3.
    S. Zamenhof, R. DeGiovanni, and R. J. Rich, J. Bacteriology 71: 60 (1956).Google Scholar
  4. 4.
    O. T. Avery, C. M. McLeod, and M. McCarty, “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III.” J. Expt. Med. 79: 137 (1944).CrossRefGoogle Scholar
  5. 5.
    R. D. Hotchkiss, Transfer of Penicillin Resistance in Pneumococci by the Desoxyribonucleate Derived from Resistant Cultures, Cold Spring Harbor Symp. Quant. Biol. 16: 457 (1951).PubMedCrossRefGoogle Scholar
  6. 6.
    R. D. Hotchkiss, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 321.Google Scholar
  7. 7.
    S. Zamenhof, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 351.Google Scholar
  8. 8.
    B. S. Strauss, “Chemical Genetics,” W. B. Saunders Co., Philadelphia, 1960.Google Scholar
  9. 9.
    R. E. Hartman, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 408.Google Scholar
  10. 10.
    F. Jacob and E. L. Wollman, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 468.Google Scholar
  11. 11.
    G. S. Stent, “Molecular Biology of Bacterial Viruses,” W. H. Freeman, San Francisco, 1963.Google Scholar
  12. 12.
    R. M. Herriott, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 399.Google Scholar
  13. 13.
    H. Fraenkel-Conrat, The Role of the Nucleic Acid in the Reconstitution of Active Tobacco Mosaic Virus, J. Am. Chem. Soc. 78: 882 (1956).CrossRefGoogle Scholar
  14. 14.
    A. Gierer and G. Schramm, Infectivity of Ribonucleic Acid from Tobacco Mosaic Virus, Nature 177(4511):702(1956).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Fraenkel-Conrat, B. A. Singer, and R. C. Williams, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 501.Google Scholar
  16. 16.
    M. H. F. Wilkins, W. E. Seeds, A. R. Stokes, and H. R. Wilson, Helical Structure of Crystalline Deoxypentose Nucleic Acid, Nature 172(4382):759(1953).Google Scholar
  17. 17.
    R. E. Franklin and R. G. Gosling, Nature 172:156(1953); Molecular Structure of Nucleic Acids-Molecular Configuration in Sodium Thymonucleate, Nature 171(4356): 740(1953).Google Scholar
  18. 18.
    J. D. Watson and F. H. C. Crick, Molecular Structure of Nucleic Acids-A Structure for Deoxyribose Nucleic Acid, Nature 171(4356): 737(1953); Genetical Implications of the Structure of Deoxyribonucleic Acid, Nature 171(4361): 964(1953).Google Scholar
  19. 19.
    F. H. C. Crick, The Structure of Hereditary Material, Sci. Am. 191(4):54(1954).Google Scholar
  20. 20.
    F. H. C. Crick, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 532.Google Scholar
  21. 21.
    J. Josse, in: “Proceedings of the Fifth International Congress of Biochemistry,” Vol. 1: Biological Structure and Function at the Molecular Level ( V. A. Engelhardt, ed.), Pergamon Press, Inc., New York, 1963, p. 79.Google Scholar
  22. 22.
    C. Levinthal and C. A. Thomas, Jr., Molecular Autoradiography: The fi-Ray Counting from Single Virus Particles and DNA Molecules in Nuclear Emulsions, Biochim. Biophys. Acta 23: 453 (1957).Google Scholar
  23. 23.
    A. Rich, Molecular Structure of Nucleic Acids, Rev. Mod. Phys. 31: 191 (1959).CrossRefGoogle Scholar
  24. 24.
    V. Luzzati, A. Nicolaieff, and F. Masson, Structure de l’acide désocyribonucléique en solution: Étude par diffusion des rayons X aux petits angles, J. Mol. Biol. 3 (2): 185 (1961).PubMedCrossRefGoogle Scholar
  25. 25.
    P. Doty, Configurations of Biologically Important Macromolecules in Solution, Rev. Mod. Phys. 31: 107 (1959).CrossRefGoogle Scholar
  26. 26.
    O. B. Ptitsyn and Yu. E. Eizner, Vysokomolekul. Soedin. 3: 1863 (1961).Google Scholar
  27. 27.
    J. E Hearst and W. H. Stockmayer, Sedimentation Constants of Broken Chains and Wormlike Coils, J. Chem. Phys. 37: 1425 (1962).Google Scholar
  28. 28.
    C. L. Sadron, in: “The Nucleic Acids: Chemistry and Biology,” Vol. 3 ( E. Chargaff and J. N. Davidson, eds.), Academic Press, Inc., New York, 1960, p. 1.Google Scholar
  29. 29.
    O. B. Ptitsyn and B. A. Fedorov, Dokl. Akad. Nauk S.S.S.R., 1965.Google Scholar
  30. 30.
    M. Meselson, F. W. Stahl, and J. Vinograd, Equilibrium Sedimentation of Macromolecules in Density Gradients, Proc. Natl. Acad. Sci. U.S. 43: 581 (1957).Google Scholar
  31. 31.
    G. H. Haggis, D. Michie, A. R. Muir, K. B. Roberts, and P. M. B. Walker, “Introduction to Molecular Biology,” John Wiley and Sons, Inc., New York, 1964.Google Scholar
  32. 32.
    M. Grünberg-Manago and S. Ochoa, Enzymatic Synthesis and Breakdown of Poly-nucleotides; Polynucleotide Phosphorylase, J. Am. Chem. Soc. 77: 3165 (1955).Google Scholar
  33. 33.
    J. R. Fresco and B. M. Alberts, The Accommodation of Noncomplementary Bases in Helical Polyribonucleotides and Deoxyribonucleic Acids, Proc. Natl. Acad. Sci. U.S. 46: 311 (1960).Google Scholar
  34. 34.
    J. R. Fresco, B. M. Alberts, and P. Doty, Some Molecular Details of the Secondary Structure of Ribonucleic Acid, Nature 188(4745):98(1960).Google Scholar
  35. 35.
    A. S. Spirin, “Macromolecular Structure of Ribonucleic Acids,” Reinhold Publishing Corp., New York, 1964.Google Scholar
  36. 36.
    M. Spencer, W. Fuller, M. H. Wilkins, and G. L. Brown, Determination of the Helical Configuration of Ribonucleic Acid Molecules by X-ray Diffraction Study of Crystalline Amino Acid-Transfer Ribonucleic Acid, Nature 194(4833): 1014(1962).Google Scholar
  37. 37.
    M. Spencer, X-ray Diffraction Studies of the Secondary Structure of RNA, Cold Spring Harbor Symp. Quant. Biol. 28: 77 (1963).Google Scholar
  38. 37a.
    V. N. Tsvetkov, L. L. Kiselev, L. Yu. Frolova, and S. Ya. Lyubina, Vysokomolekul. Soedin. 6: 568 (1964);Google Scholar
  39. V. N. Tsvetkov, L. L. Kiselev, L. Yu. Frolova, S. Ya. Lyubina, S. I. Klenin, N. A. Nikitin, and V. S. Skazka, Molecular Morphology of Transfer Ribonucleic Acids. Certain Hydrodynamic and Optical Properties of Molecules in Organic Solvents, Biophysics (U.S.S.R.) (English Transi.) 9(3):277(1964).Google Scholar
  40. 38.
    R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisée, S. H. Merrill, J. R. Penswick, and A. Zamir, Structure of a Ribonucleic Acid, Science 147: 1462 (1965).Google Scholar
  41. 39.
    J. Marmur, R. Rownd, and C. L. Schildkraut, Denaturation and Renaturation of Deoxyribonucleic Acid, in: “Progress in Nucleic Acid Research,” Vol. 1 ( J. N. Davidson and W. E. Cohn, eds.), Academic Press, Inc., New York, 1963.Google Scholar
  42. 40.
    M. Meselson and F. W. Stahl, The Replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U.S. 44: 671 (1958).Google Scholar
  43. 41.
    J. Eigner, Ph.D. Dissertation, Harvard University, Cambridge, Mass., 1960.Google Scholar
  44. 42.
    C. A. Thomas, Jr., and K. I. Berns, The Physical Characterization of DNA Molecules released from T2 and T4 Bacteriophage, J. Mol. Bio. 3(3):277(1961).CrossRefGoogle Scholar
  45. 43.
    N. Sueoka, J. Marmur, and P. Doty, II Dependence of the Density of Deoxyribonucleic Acids of Guanine-Cytosine Content, Nature 183(4673): 1429(1959).PubMedCrossRefGoogle Scholar
  46. 44.
    J. H. Gibbs and E. A. DiMarzio, Theory of Helix-Coil Transitions in Polypeptides, J. Chem. Phys. 28: 1247 (1958);Google Scholar
  47. J. H. Gibbs and E. A. DiMarzio, Statistical Mechanics of Helix-Coil Transitions in Biological Macromolecules, J. Chem. Phys. 30: 271 (1959).CrossRefGoogle Scholar
  48. 45.
    S. A. Rice and A. Wada, On a Model of the Helix-Coil Transition in Macromolecules, II, J. Chem. Phys. 28: 233 (1958).Google Scholar
  49. 46.
    T. L. Hill, Generalization of the One-dimensional Ising Model Applicable to Helix Transitions in Nucleic Acids and Proteins, J. Chem. Phys. 30: 383 (1959).CrossRefGoogle Scholar
  50. 47.
    R. F. Steiner, Hydrogen Ion Titration Curve of a Polynucleotide Capable of Undergoing a Helix-coil Transition, J. Chem. Phys. 32: 215 (1960).Google Scholar
  51. 48.
    B. H. Zimm, Theory of `Melting’ of the Helical Form in Double Chains of the DNA Type, J. Chem. Phys. 33: 1349 (1960);CrossRefGoogle Scholar
  52. S. Lifson and B. H. Zimm, Simplified Theory of the Helix-coil Transition in DNA Based on a Grand Partition Function, Biopolymers 1: 15 (1963).Google Scholar
  53. 49.
    T. M. Birshtein and O. B. Ptitsyn, “High Polymers,” Vol. 22, Conformations of Macromolecules, Interscience Publishers, Inc., New York, 1966.Google Scholar
  54. 50.
    D. Jordan, in: “The Nucleic Acids: Chemistry and Biology,” Vol. 1 ( E. Chargaff and J. N. Davidson, eds.), Academic Press, Inc., New York, 1955, p. 447.Google Scholar
  55. 51.
    T. M. Birshtein, Biofizika 7: 513 (1962).Google Scholar
  56. 52.
    B. I. Sukhorukov, Yu. Sh. Moshkovskii, T. M. Birshtein, and V. N. Lystov, Optical Properties and Molecular Structure of Nucleic Acids and Their Components, II,Biophysics (U.S.S.R.) (English Transi.) 8(3): 348(1963).Google Scholar
  57. 53.
    O. B. Ptitsyn, Biofizika 7: 257 (1962).Google Scholar
  58. 54.
    P. Doty, H. Boedtker, J. R. Fresco, R. Haselkorn, and M. Litt, Secondary Structure in Ribonucleic Acids, Proc. Natl. Acad. Sci. U.S. 45: 482 (1959).Google Scholar
  59. 55.
    M. Beer and C. A. Thomas, Jr., The Electron Microscopy of Phage DNA Molecules with Denatured Regions, J. Mol. Biol. 3(5):699(1961).Google Scholar
  60. 56.
    I. Tinoco, Jr., Hypochromism in Polynucleotides, J. Am. Chem. Soc. 82: 4785 (1960).Google Scholar
  61. 57.
    A. Rich and I. Tinoco, Jr., The Effect of Chain Length upon Hypochromism in Nucleic Acids and Polynucleotides, J. Am. Chem. Soc. 82: 6409 (1960).Google Scholar
  62. 58.
    H. DeVoe and I. Tinoco, Jr., The Hypochromism of Helical Polynucleotides, J. Mol. Biol. 4(6):518(1962).Google Scholar
  63. 59.
    E. V. Anufrieva, M. V. Vol’kenshtein, and T. V. Sheveleva, Biofizika 7: 554 (1962).Google Scholar
  64. 60.
    E. V. Anufrieva, M. V. Vol’kenshtein, and T. V. Sheveleva, in: “Molekulyarnaya Biofizika,” Nauka, Moscow, 1965.Google Scholar
  65. 61.
    S. I. Vavilov, Mikrostruktura Sveta, Izd. Akad. Nauk S.S.S.R., 1950.Google Scholar
  66. 62.
    P. P. Feofilov, “The Physical Basis of Polarized Emission,” Consultants Bureau, New York, 1961.Google Scholar
  67. 63.
    F. Cramer, “Einschlussverbindungen,” Springer, Berlin, 1954.Google Scholar
  68. 64.
    V. Luzzati, La Structure de l’acide désoxyribonucleique en solution. Etude par diffusion des rayons X aux petits angles, J. Chim. Phys. 58: 899 (1961).Google Scholar
  69. 65.
    V. I. Permogorov, Yu. S. Lazurkin, and S. Z. Shmurak, An Investigation of Complexes of Nucleic Acid with Acridine, Dokl. Biophys. Sect. (English Transi.) 155(6): 71(1964).Google Scholar
  70. 66.
    V. I. Permogorov and Yu. S. Lazurkin, Mechanism of Binding of Actinomycin with DNA, Biophysics (U.S.S.R.) (English Transi.) 10(1): 15(1965).Google Scholar
  71. 67.
    V. I. Permogorov, A. A. Prozorov, M. F. Shemyakin, Yu. S. Lazurkin, and P. T. Khesin, in: “Molekulyarnaya Biofizika,” Nauka, Moscow, 1965.Google Scholar
  72. 68.
    M. D. Frank-Kamenetskii, A Theoretical Examination of the Effect of Various Factors on the Thermal Denaturation of DNA, Dokl. Biophys. Sect. (English Transi.) 157(1): 106(1964).Google Scholar
  73. 69.
    W. Kuhn, Zeitbedarf der Längsteilung von miteinander verzwirnten Fadenmolekülen, Experientia 13: 301 (1957).Google Scholar
  74. 70.
    H. C. Longuet-Higgins and B. H. Zimm, Calculation of the Rate of Uncoiling of the DNA Molecule, J. Mol. Biol. 2(1): 1(1960).Google Scholar
  75. 71.
    M. Fixman, Rate of Unwinding of DNA, J. Mol. Biol. 6(1):39(1963).Google Scholar
  76. 72.
    J. Marmur and P. Doty, Thermal Renaturation of Deoxyribonucleic Acids, J. Mol. Biol. 3(5): 585(1961).Google Scholar
  77. 73.
    J. Marmur, C. L. Schildkraut, and P. Doty, Biological and physical aspects of reversible denaturation of deoxyribonucleic acids, in: “The Molecular Basis of Neoplasia,” University of Texas Press, Austin, Tex., 1962, p. 9.Google Scholar
  78. 74.
    A. N. Belozerskii and A. S. Spirin, in: “Nucleinovye Kisloty,” 1962.Google Scholar
  79. 75.
    H. DeVoe and I. Tinoco, The Stability of Helical Polynucleotides: Base Contributions, J. Mol. Biol. 4(6):500(1962).Google Scholar
  80. 76.
    M. V. Vol’kenshtein, “Stroeinie i fizicheskie svoistva molekul,” Izd. Akad. Nauk SSSR, 1955;Google Scholar
  81. Y. K. Syrkin and M. E. Dyatkina, “Structure of Molecules and the Chemical Bond,” Dover Publications, Inc., New York, 1964.Google Scholar
  82. 77.
    M. Delbrück and G. S. Stent, in: “The Chemical Basis of Heredity” ( W. D. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 699.Google Scholar
  83. 78.
    M. Meselson and F. W. Stahl, The Replication of DNA in Escherichia coli, Proc. Natl. Acad. Sci. U.S. 44: 671 (1958).Google Scholar
  84. 79.
    A. A. Prokof’eva-Bel’govskaya and Y. F. Bogdanov, Zh. Vses. Khim. Obshchestva im D. I. Mendeleeva 8(1):33(1963).Google Scholar
  85. 80.
    C. D. Darlington, The Chromosome as a Physico-chemical Entity, Nature 176(4494): 1139(1955).Google Scholar
  86. 81.
    H. Ris, in: “The Chemical Basis of Heredity” ( W. E. McElroy and B. Glass, eds.), Johns Hopkins Press, Baltimore, Md., 1956, p. 23.Google Scholar
  87. 82.
    J. H. Taylor, in: “Selected Papers on Molecular Genetics,” Vol. 1 ( J. H. Taylor, ed.), Academic Press, Inc., New York, 1965, p. 65.Google Scholar
  88. 83.
    R. L. Sinsheimer, A Single-stranded Deoxyribonucleic Acid from Bacteriophage ¢X174, J. Mol. Biol. 1(1):43(1959);Google Scholar
  89. R. L. Sinsheimer, Single-stranded DNA, Sci. Am. 207(1):109(1962).Google Scholar
  90. 84.
    D. E. Bradley, Some New Small Bacteriophages (0X174 Type), Nature 195 (4841): 622 (1962).CrossRefGoogle Scholar
  91. 85.
    J. Cairns, The Chromosome of Escherichia coli, Cold Spring Harbor Symp. Quant. Biol. 28: 43 (1963).Google Scholar
  92. 86.
    A. Kornberg, Biosynthesis of Nucleic Acids, Rev. Mod. Phis. 31: 200 (1959).Google Scholar
  93. 87.
    A. Kornberg, “Enzymatic Synthesis of DNA,” John Wiley and Sons, Inc., New York, 1962.Google Scholar
  94. 88.
    A. Kornberg, L. L. Bertsch, J. F. Jackson, and H. G. Khorana, Enzymatic Synthesis of Deoxyribonucleic Acid, XVI, Proc. Natl. Acad. Sci. U.S. 51: 315 (1964).Google Scholar
  95. 89.
    M. V. Vol’kenshtein, in: “Proceedings of the Fifth International Congress on Biochemistry, Vol. 1: Biological Structure and Function at the Molecular Level” (V. A. Engelhardt, ed.), Pergamon Press, Inc., New York, 1963, p. 100.Google Scholar
  96. 90.
    M. V. Vol’kenshtein and A. M. Eliashevich, Dokl Akad. Nauk S.S.S.R. 131: 538 (1960);Google Scholar
  97. M. V. Vol’kenshtein and A. M. Eliashevich, A Statistical and Thermodynamic Theory of the Reduplication of Desoxyribonucleic Acid (DNA), Biophysics (U.S.S.R.) (English Transi.) 6(5): 1(1961).Google Scholar
  98. 91.
    M. V. Vol’kenshtein and A. M. Eliashevich, On the Theory of Mutation, Dokl. Biol. Sci. Sect. (English Transi.) 136(1–6):19(1961).Google Scholar
  99. 92.
    A. G. Pasynskii, The Role of Matrix Structures in Replication, Biophysics (U.S.S.R.) (English Transi.) 5(1): 12(1960).Google Scholar
  100. 93.
    J. Adler, I. R. Lehman, M. J. Bessman, E. S. Simms, and A. Kornberg, Enzymatic Synthesis of Deoxyribonucleic Acid, IV, Natl. Acad. Sci. U.S. 44: 641 (1958).Google Scholar
  101. 94.
    K. C. Atwood, Sequential Deoxyribonucleic Acid Replication, Science 132: 617 (1960).Google Scholar
  102. 95.
    H. V. Aposhian and A. Kornberg, Enzymatic Synthesis of Deoxyribonucleic Acid, [X, J. Biol. Chem. 237: 519 (1962).Google Scholar
  103. 96.
    F. J. Bollum, Calf Thymus Polymerase, J. Biol. Chem. 235(8):2399(1960).Google Scholar
  104. 97.
    R. L. Sinsheimer, The Replication of Bacteriophage 4X174, J. Chim. Phys. 58: 986 (1961);Google Scholar
  105. R. I. Sinsheimer, B. Starman, C. Nagler, and S. Guthrie, The Process of Infection with Bacteriophage X174, I: Evidence for a “Replican Form,” J. Mol. Biol. 4: 142 (1962).Google Scholar
  106. 98.
    C. Weissman, L. Simon, and S. Ochoa, Induction by an RNA Phage of an Enzyme Catalyzing Incorporation of Ribonucleotides into Ribonucleic Acid, Proc. Natl. Acad. Sci. U.S. 49: 407 (1963);CrossRefGoogle Scholar
  107. C. Weissman and P. Borst, Double-stranded Ribonucleic Acid Formation in vitro by MS2 Phage-induced RNA Synthetase, Science 142: 1188 (1963).CrossRefGoogle Scholar
  108. 99.
    R. Rolfe, Changes in the Physical State of DNA during the Replication Cycle, Proc. Natl. Acad. Sci. U.S. 49: 386 (1963).CrossRefGoogle Scholar
  109. 100.
    N. Sueoka and H. Yoshikawa, Regulation of Chromosome Replication in Bacillus subtilis, Cold Spring Harbor Symp. Quant. Biol. 28: 47 (1963).CrossRefGoogle Scholar
  110. 101.
    H. Ris and B. L. Chandler, The Ultrastructure of Genetic Systems in Prokaryotes and Eukaryotes, Cold Spring Harbor Symp. Quant. Biol. 28: 1 (1963).CrossRefGoogle Scholar
  111. 102.
    C. Levinthal and H. R. Crane, On the Unwinding of DNA, Proc. Natl. Acad. Sci. U.S. 42: 436 (1956).CrossRefGoogle Scholar
  112. 103.
    M. V. Volkenshtein, N. M. Godzhayev, and Yu. Ya. Gotlib, Biofizika 7: 16 (1962).Google Scholar
  113. 104.
    M. V. Volkenshtein, N. M. Godzhayev, Yu. Ya. Gotlib, and O. B. Ptitsyn, Kinetics of Biosynthesis, Biophysics (U.S.S.R.) (English Transi.) 8(1): 1(1963).Google Scholar
  114. 105.
    A. N. Orlov and S. I. Fishman, Kinetics of Reduplication of Chain Molecules, Dokl. Biol. Sci. Sect. (English Transi.) 132(1–6):340(1960).Google Scholar
  115. 106.
    M. V. Volkenshtein, Yu. Ya. Gotlib, and O. B. Ptitsyn, Fiz. Tverd. Tela 3: 396 (1960).Google Scholar
  116. 107.
    H. K. Schachman, J. Adler, C. M. Radding, I. R. Lehman, and A. Kornberg, Enzymatic Synthesis of Deoxyribonucleic Acid, VII, J. Biol. Chem. 235: 3242 (1960).PubMedGoogle Scholar
  117. 108.
    M. V. Volkenstein and S. N. Fishman, Polynucleotide Synthesis at Oligomeric Templates, Biopolvmers 4: 77 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Mikhail V. Vol’kenshtein
    • 1
  1. 1.Institute of Molecular BiologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations