The GABA System as a Factor in Adaptation and Pharmacological Treatment of Stress

  • Yu. D. Ignatov
  • B. V. Andreev
  • G. E. Galustyan


The part played by the catecholamine, cholinergic and sero-toninergic systems in generating stress and the countering of stress by pharmacological agents has recently been fairly fully investigated (Maynert and Levy, 1964; Broverman et al., 1974; Anichkov, 1974; Anokhina, 1975; Matlina et al., 1975; Palkovits et al., 1976; Valdman et al., 1979; Andreev, 1978). Yet current ideas on the neurochemical mechanisms of stress do not preclude the existence of other neurotransmitter systems. Pharmacological correction of stress may be bound up with an agent’s action on the γ-aminobutyric acid (GABA) system. This system is involved in regulating neuronal activity (Curtis and Johnston, 1974; Roberts, 1976; Sytinsky et al., 1978) and in modulating monoaminergic (Biswas and Carlsson, 1977; Pycock and Horton, 1978) and neuroendocrine changes (Tapia, 1980), both of which are instrumental in generating and reinforcing pathological changes associated with stress (Matlina et al., 1975; Broverman et al., 1974; Anokhina, 1975; Valdman et al., 1979; Lapin, 1979). This involvement highlights the part played by the neurochemical system in activating the naturally occurring inhibitory mechanisms which play a part in adaptation.


Gaba Receptor Stress Control Gaba Concentration Gaba System Somatic Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., and Matsuda, M., 1977, γ-Aminobutyric acid metabolism in subcellular particles of mouse brain and its relationship to convulsions, J.Biochem., 82:195–200.PubMedGoogle Scholar
  2. Andreev, B. V., 1978, Role of Cholinergic and serotoninergic processes for modulation of the activity of negative reinforcement system, Bull.Exp.Biol.Med., 86:pp.1462–1465 (Engl.Tr.).CrossRefGoogle Scholar
  3. Andreev, B. V., Galustyan, G. E., and Marusov, I. V., 1979, On the problem of significance of GABAergic processes for realization of diazepam anxiolytic effect, in: “Proceedings of the Leningrad V. M. Bekhterev Psychoneurological Research Institute,” Vol. 91, E. A. Babayan and M. M. Kabanov, eds., Leningrad, pp.20–28.Google Scholar
  4. Andreev, B. V., and Ignatov, Yu. D., 1981, Effect of GABA-negative drugs on anxiolytic and sedative effects of diazepam, Bull.Exp.Biol.Med., 91:756–758 (Engl.Tr.)CrossRefGoogle Scholar
  5. Andreev, B. V., Vasiliev, Yu. N., Ignatov, Yu. D., Kachan, A. T., and Bogdanov, N. N. 1981, Effect of electroacupuncture on manifestations of emotional stress due to pain, Bull.Exp. Biol.Med., 91:21–23. (Engl.Tr.).CrossRefGoogle Scholar
  6. Andreev, B. V., Ignatov, Yu. D., Nikitina, Z. S., and Sytinsky, I. A., 1982, Anti-stress role of the GABAergic system of the brain, J.Higher Nerv.Activ. I. P. Pavlov, 32:511–519.Google Scholar
  7. Anichkov, S. V., Zavodskaya, I. S., Moreva, E. V., and Vedeneeva, Z. S., 1969, Neurogenic dystrophies and their pharmacological correction, “Meditsina”, Leningrad.Google Scholar
  8. Anichkov, S. V., 1974, The selective action of transmitter drugs, “Meditsina”, Leningrad.Google Scholar
  9. Anorhina, I. P., 1975, Neurochemical mechanisms of mental diseases, “Meditsina”, Moscow.Google Scholar
  10. Ayrapetyants, M. G., Khonicheva, N. M., Mekhedova, A. Ya., and Iliana Wiliar, 1980, Reactions to moderate functional loads in rats with different individual behaviour, J.Higher Nerv. Activ., 30:994–1002.Google Scholar
  11. Ayrapetyants, M. G., and Vein, A. M., 1982, “Neuroses in Experiment and in Clinic,” P. V. Simonov, ed., “Nauka”, Moscow.Google Scholar
  12. Balazs, R., Machinyama, Y., and Patel, A. J., 1973, Compartmentation and the metabolism of γ-aminobutyrate, in: “Metabolic Compartmentation in the Brain,” MacMillan, London — Basingstoke, pp.57–70.Google Scholar
  13. Baxter, C. F., 1970, The nature of γ-aminobutyric acid, in: “Handbook of Neurochemistry,” A. Lajtha, ed., Vol.3, Plenum Press, New York, pp.289–353.Google Scholar
  14. Berntman, L., and Siesjo, B. K., 1978, Brain energy metabolism and circulation in hypoxia, in: “Proc. Eur. Soc. Neurochem.,” Vol.1, pp.253–265.Google Scholar
  15. Biswas, B., and Carlsson, A., 1977, The effect of intracerebro-ventricularly administered GABA on brain monoamine metabolism, Naunyn-Schmiedebergs Arch.Pharmacol., 299:41–46.PubMedCrossRefGoogle Scholar
  16. Broverman, D. M., Klaiber, E. L., Vogel, W., and Kosayasini Y., 1974, Short-term versus long-term effects of adrenal hormone on behaviour, Psychol.Bull., 81:672–694.PubMedCrossRefGoogle Scholar
  17. Bunyatyan, N. Kh, 1976, Recent advances in the field of biochemistry and biochemical pharmacology of γ-aminobutyric acid, J. of D.I. Mendeleev All-Union Chem.Soc, 21:130–136.Google Scholar
  18. Carlsson, C., Hagendal, M., Kaaskik, A. E., and Siesjo, B. K., 1976, The effects of diazepam on cerebral blood flow and oxygen in rats and its synergistic interaction with nitrous oxide, Anesthesiology, 45:319–325.PubMedCrossRefGoogle Scholar
  19. Costa, E., The role of gamma-aminobutyric acid in the action of 1,4-benzodiazepines, Trends Pharmacol.Sci., 1:41–44.Google Scholar
  20. Curtis, D. R., and Johnston, G. A., Amino acid transmitters in central nervous system, 1974, Rev.Physiol., 69:98–199, Springer-Verlag, Berlin.Google Scholar
  21. Defeudis, F. V., 1980, Binding studies with muscimol: relation to synaptic γ-aminobutyrate receptors, Neuroscience, 5:675–688.PubMedCrossRefGoogle Scholar
  22. Earley, C. J., and Leonard, B. E. Consequences of reward or nonreward conditions; run away behavior, neurotransmitters and physiological indicators of stress, Pharmacol.Biochem.Behav., 11:215–219.Google Scholar
  23. Enna, G. J., and Maggi, A., 1979, Biochemical parmacology of GABA-ergic agonists, Life Sci., 24:1727–1738.PubMedCrossRefGoogle Scholar
  24. Galustyan, G. E., 1979, Quantitative histochemical study of the influence of benzodiazepine tranquilizers on the activity of GABA transaminase in rat brain, Bull.Exp.Biol.Med., 87:164–166.CrossRefGoogle Scholar
  25. Galustyan, G. E., and Prianishnikov, V. A., 1978, Cytospectrophoto-metric study of the kinetics of histochemical reaction of GABA transaminase in cryostat sections of rat cerebellar cortex, Histochemistry, 57:68–77.CrossRefGoogle Scholar
  26. Gottesfeld, Z., Kvetnansky, A., Kopin, I. J., and Jacobowitz, M., 1978, Effects of repeated immobilization stress on glutamate decarboxylase and choline acetyltransferase in discrete brain regions, Brain Res., 152:374–378.PubMedCrossRefGoogle Scholar
  27. Hann, Z., Telegdy, G., and Lissak, K., 1975, The role of the pituitary-adrenal system in changes induced by noxious stimuli in hypothalamic gamma-aminobutyric acid content in the rat, Acta Physiol.Acad.Sci.Hung., 46:325–330.Google Scholar
  28. Hertz, L., 1979, Functional interactions between neurones and astrocytes, I. Turnover and metabolism of putative amino acid transmitters, Prog.Neurobiol., 13:277–323.PubMedCrossRefGoogle Scholar
  29. Ignatov Yu. D., Galustyan, G. E., and Andreev, B. V., 1982, The role of GABAergic mechanisms in stress-protective effect or benzodiazepine tranquilizers, in: “Neurochemical Bases of Psychotropic Effect,” A. V. Valdman, ed., Institute of Pharmacology, Moscow, pp.118–126.Google Scholar
  30. Kharlamov, A. N., and Rayevsky, K. S., 1980, Tranquilizing effect of n-dipropylacetate and other GABAergic substances in conditions of conflict situation, Bull.Exp.Biol.Med., 89:35–37.Google Scholar
  31. Lai, J. C. K., Walsh, J. M., Dennis, S. C., and Clark, J. B., 1977, Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization, J.Neurochem., 28:625–631.PubMedCrossRefGoogle Scholar
  32. Lal, H., Sherman, G. T., Fielding, S., Dunn, R., Kruse, H., and Theurer, K., 1980, Evidence that GABA mechanisms mediate the anxiolytic action of benzodiazepines: a study with valproic acid, Neuropharmacology, 19:785–789.PubMedCrossRefGoogle Scholar
  33. Lapin, I. P., Goals and possibilities of the substitution of tranquilizers in the treatment of protracted neurotic abnormalities and in the prophylaxis of after-effects of chronic emotional stress, in: “Proceedings of the Leningrad V. M. Bekhterev Psychoneurological Research Institute,” Vol.91, E. A. Babayan and M. M. Kabanov, eds., Leningrad, pp.28–37.Google Scholar
  34. Le Page, G. A., 1946, Biological energy transformations during shock as shown by tissue analyses, Am.J.Physiol., 146:267–281.Google Scholar
  35. Lojda, Z., Gossrau, R., and Schieler, T. H., 1979, Enzyme Histochemistry, A Laboratory Manual, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  36. Lowe, I. P., Robins, E., and Eyerman, G. S., 1958, The fluorimetric measurement of glutamic decarboxylase and its distribution in brain, J.Neurochem., 3:8–18.PubMedCrossRefGoogle Scholar
  37. Marushevskaya N. Ya., 1971, The activity of dehydrogenases in brains of young and old animals in various functional states and during the training and retention of conditioned defensive reflex. Summary of Candidate Thesis, Stavropol.Google Scholar
  38. Matlina, E. Sh., Baru, A. M., and Vasiliev, V. N., 1975, Emotions: the role of some transmitters and hormones in mechanisms of induction and retention of emotional states, in: “Advances of Science and Technique. Human and Animal Physiology,” Vol. 15, Moscow, VINITI, pp.30–93.Google Scholar
  39. Maynert E. W., and Levi, R., 1964, Stress-induced release of brain norepinephrine and its inhibition by drugs, J.Pharmacol. Exp.Ther., 143:90–95.PubMedGoogle Scholar
  40. Meerson, F. Z., 1981, Adaptation, stress and prophylaxis, “Meditsina”, Moscow.Google Scholar
  41. Nilova, N. S., 1963, The contents of free amino acids in cerebral hemispheres during the excitation of central nervous system, Doklady AN SSSR, 150:1161–1163.Google Scholar
  42. Ostrovskaya, R. U., Molodavkin, G. M., Porfirieva, R. P., and Zubovskaya, A. M., 1975, On the mechanism of anticonvulsant action of diazepam, Bull.Exp.Biol.Med., 79:50–53CrossRefGoogle Scholar
  43. Palkovits, M., Brownstein, M., Kizer, J. S., Saavedra, J. M., and Kopin, I. J., 1976, Effect of stress on serotonin concentration and tryptophan hydroxylase activity of brain nuclei, Neuroendocrinology, 22:298–304.PubMedCrossRefGoogle Scholar
  44. Pericic, D., 1980, Effect of γ-vinyl GABA on enzymes of GABA system in specific brain regions, Period.Biol., 82:19–23.Google Scholar
  45. Pycock, C., and Horton, R., 1978, Regional changes in the concentrations of cerebral monoamines and their metabolites after ethanolamine-O-sulphate induced elevation of brain γ-amino-butyric concentrations, Biochem.Pharmacol., 27:1827–1830.PubMedCrossRefGoogle Scholar
  46. Rayevsky, K. S., 1981, Neurochemical aspects of the pharmacology of GABAergic drugs, Pharmacol.Toxicol., 44:517–529.Google Scholar
  47. Roberts, E., 1976, Disinhibition as an organizing principle in the nervous system. The role of the GABA system. Application to neurological and psychiatric disorders, in: “GABA in Nervous System Function,” E. Roberts, T. N. Chase, and D. B. Towers, eds., Raven Press, New York, pp.515–539.Google Scholar
  48. Sarhan, S., and Seiler, N., 1979, Metabolic inhibitors and subcellular distribution of GABA, J.Neurosci.Res., 4:399–421.PubMedCrossRefGoogle Scholar
  49. Schechter, P. J., Tranier, Y., Jung, M. J., and Bohlen, P., 1977, Audiogenic seizure protection by elevated brain GABA concentration in mice: effect of γ-acetylenic GABA and γ-vinyl GABA, two irreversible GABA-T inhibitors, Eur.J.Pharmacol., 45:319–328.PubMedCrossRefGoogle Scholar
  50. Singh, H. G., Singh, R. H., and Udupa, K. N., 1979, Effects of electroshock on GABA glutamate content in rat brain, Indian J.Exp.Biol., 17:418–419.PubMedGoogle Scholar
  51. Sutton, I., and Simmonds, M. A., 1974, Effects of acute and chronic pentobarbitone on the γ-aminobutyric acid system in rat brain, Biochem.Pharmacol., 23:1801–1808.PubMedCrossRefGoogle Scholar
  52. Synstisky, I. A., Soldatenkov, A. T., and Lajtha, A., 1978, Neurochemical basis of the therapeutic effect of γ-aminobutyric acid and its derivatives, Prog.Neurobiol., 10:89–135.CrossRefGoogle Scholar
  53. Tapia, R., GABAergic mechanisms and their relationship to some hormones in the central nervous system, in: “Comparative Aspects of Neuroendocrine Control of Behavior,” Front.Horm.Res., (Karger, Basel), 6:86–103.Google Scholar
  54. Valdman, A. V., 1975, Psychopharmacological aspects of emotional stress, Vestnik AMNSSR, No.8, pp.26–33.Google Scholar
  55. Valdman, A. V., Kozlovskaya, M. M., and Medvedev, O. S., 1979, Pharmacological regulation of emotional stress, “Meditsina”, Moscow.Google Scholar
  56. Van Gelder, N. M., 1965, The histochemical demonstration of γ-amino butyric acid metabolism by reduction of a tetrazolium salt, J.Neurochem., 12:231–237.CrossRefGoogle Scholar
  57. Vasiliev, V. Yu, and Yeryomin, V. P., 1968, Express method for the estimation of activity of γ-aminobutyrate-cx-oxoglutarate transaminase. Bull.Exp.Biol.Med., 66:125–126.Google Scholar
  58. Vasiliev, Yu. N., Degtyaryova, E. P., Dmitriev, A. V., Dulinets, L. A., and Ignatov, Yu. D., 1979, The influence of benzodiazepine tranquilizers on the autonomic indices of the state of emotional tension in the therapeutic stomatological clinic, Stomatology, No.4, pp.29–33.Google Scholar
  59. Vladimirova, E. A., 1956, The influence of conditioned reflex induced excitation of the central nervous system on the content of adenosine triphosphoric and adenosine diphosphoric acids in brain, Vopros.Med.Khimii, 2:47–52.Google Scholar
  60. Volicer, L., and Klosowitz, B. A., 1979, Effect of ethanol and stress on gamma-aminobutyric acid and guanosine 3′,5′-monophosphate levels in the rat brain, Biochem.Pharmacol, 28:2677–2679.PubMedCrossRefGoogle Scholar
  61. Weil-Malherbe, H., 1962, Ammonia metabolism in the brain, in: “Neurochemistry,” Springfield, Charles C. Thomas Publishers, pp.321–330.Google Scholar

Copyright information

© Consultants Bureau, New York 1986

Authors and Affiliations

  • Yu. D. Ignatov
    • 1
  • B. V. Andreev
    • 1
  • G. E. Galustyan
    • 1
  1. 1.Department of PharmacologyPavlov Medical InstituteLeningradRussia

Personalised recommendations